Chilled-Water System Variations

series. The left half of Figure 50 shows a modularized configuration where series chiller modules are placed in parallel with each other, so that any upstream chiller’s valves could be “paired” with virtually any downstream chiller by opening the appropriate valves. The condenser side in a counterflow arrangement is shown in the right half of Figure 50. The advantages of this system for large chilled water systems include highest efficiency, scalability as the project grows, and high redundancy without a significant investment in extra equipment.

Figure 50. Series arrangement of evaporators and condensers

55.0°F

Evaporators

98.9°F

Condensers

 

 

 

 

 

[12.8°C]

[37.2°C]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Circuit 1

Circuit 2

 

 

 

 

 

 

 

Circuit 1

Circuit 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Circuit 1

Circuit 2

 

 

 

 

 

 

Circuit 1

Circuit 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Circuit 1

Circuit 2

 

 

 

 

 

 

Circuit 1

Circuit 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 Chiller Modules

45.1°F

 

 

 

3 Chiller Modules

91.3°F

 

 

 

 

 

[7.3°C]

 

 

 

 

 

 

[32.9°C]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Circuit 2

Circuit 1

 

 

 

 

 

 

 

Circuit 2

Circuit 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Circuit 2

Circuit 1

 

 

 

 

 

Circuit 2

Circuit 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Circuit 2

Circuit 1

 

 

 

 

 

 

 

Circuit 2

Circuit 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

37.0°F

 

 

 

 

 

 

 

 

85.0°F

 

 

 

 

 

 

 

[2.8°C]

 

 

 

 

 

 

 

 

[29.4°C]

 

 

 

 

 

 

 

Unequal Chiller Sizing

Many designers seem to default to using the same capacity chillers within a chilled-water plant.25, 26 There are benefits to using unequally-sized chillers to meet the system loads. One is that when a chiller is brought online, so is its ancillary equipment, thus increasing system energy consumption. In general, the smaller the chiller, the smaller the ancillary equipment. Another is being able to ensure that chillers are efficiently loaded. Many times this can be accomplished by using chillers that do not have the same capacity. Examine the use of 60/40 splits (one chiller at 60 percent of system capacity, the other at 40 percent) or 1/3–2/3 splits (one chiller at 1/3 of system capacity the other at 2/3). The benefit is that the system load can be more closely matched with the total chiller capacity, increasing total system efficiency by eliminating the operation of chillers and ancillary equipment for more hours of the year. One caveat for variable-primary-flow systems is that if the pressure drops are different across the unequally sized chillers, they will load even more unequally without the use of pressure-reducing valves that require extra pump energy, as shown in Table 15 on page 61.

78

Chiller System Design and Control

SYS-APM001-EN

Page 84
Image 84
Trane SYS-APM001-EN manual Unequal Chiller Sizing, Evaporators, Condensers

SYS-APM001-EN specifications

The Trane SYS-APM001-EN is an advanced control system designed for HVAC (Heating, Ventilation, and Air Conditioning) applications, specifically tailored to enhance energy efficiency and system performance. This comprehensive solution integrates cutting-edge technologies to optimize climate control in commercial and industrial environments.

One of the main features of the SYS-APM001-EN is its intuitive user interface. The system is equipped with a large, easy-to-read display that provides real-time data on system performance, energy usage, and environmental conditions. This user-friendly interface makes it simple for operators to monitor and adjust settings, ensuring optimal comfort levels and efficient energy consumption.

Another key characteristic of the SYS-APM001-EN is its advanced data analytics capabilities. The system collects and analyzes data from various sensors throughout the building, providing insights into occupancy patterns, equipment performance, and energy consumption trends. This data-driven approach allows facility managers to make informed decisions about system adjustments, predictive maintenance, and energy savings.

The SYS-APM001-EN also boasts robust integration capabilities. It can seamlessly connect with a variety of building management systems (BMS) and other third-party devices. This interoperability enables a cohesive operational ecosystem where HVAC systems can communicate and cooperate with lighting, security, and fire safety systems, enhancing overall building efficiency.

Energy efficiency is a hallmark of the SYS-APM001-EN, as it implements sophisticated algorithms to optimize system operation. These algorithms adjust equipment performance in real-time based on current conditions, thereby reducing energy waste and lowering operational costs. The system is designed to support multiple energy-saving strategies, including demand-controlled ventilation and optimal start/stop scheduling.

Additionally, the SYS-APM001-EN is built with scalability in mind, accommodating facilities of various sizes and configurations. Whether it’s a small office building or a large industrial complex, the system can be tailored to meet specific needs, ensuring that HVAC performance aligns with operational goals.

In conclusion, the Trane SYS-APM001-EN is an innovative HVAC control solution that emphasizes user experience, data-driven decision-making, and energy efficiency. With its advanced features and technologies, it is an essential tool for optimizing building performance and enhancing occupant comfort while reducing environmental impact.