Chilled-Water System Variations

Figure 40. Sidestream plate-and-frame heat exchanger

Chiller 2

 

 

Production

Chiller 1

 

Bypass Line

 

Plate-and-Frame

Distribution

Heat Exchanger

 

70

 

A number of chilled-water system variations can and should be used when appropriate. Each configuration offers specific advantages to solve problems and add value to the system.

Heat Recovery

ASHRAE/IESNA Standard 90.1–200720requires heat recovery in specific applications. Indoor air quality concerns have spurred the use of systems that subcool supply air to dehumidify, then temper, the air to satisfy space conditions. ASHRAE/IESNA Standard 90.1–2007 limits the amount of new reheat energy used in these applications. With these drivers, and energy costs, there has been a resurgence of heat recovery chillers. The example on page 75 describes a cost-effective recovered-heat strategy. This scheme is commonly used for service-water heating in resort hotels and for certain process loads.

A separate application manual21 discusses heat recovery, as does an Engineers Newsletter 22, so it is not discussed in depth in this manual. However, considerations for heat recovery on chilled-water system design are discussed.

Condenser “Free Cooling” or Water Economizer

There are several ways to accomplish free cooling through the use of a water economizer circuit. Three common techniques for chilled water systems are using a plate-and-frame heat exchanger, refrigerant migration, or well, river, or lake water. Each technique is discussed in more detail below and in an Engineers Newsletter 23.

Plate-and-frame heat exchanger

A plate-and-frame heat exchanger may be used in conjunction with a cooling tower to provide cooling during very low wet-bulb temperature conditions. When it is to be used for these purposes, designers often specify a cooling tower larger than necessary for design conditions so that it can be used for many hours with the plate-and-frame heat exchanger.

In this type of water economizer, the water from the cooling tower is kept separate from the chilled-water loop by a plate-and-frame heat exchanger. This is a popular configuration because it can achieve high heat-transfer efficiency without cross-contamination. With the addition of a second condenser-water pump and proper piping modifications, this heat exchanger can operate simultaneously with the chiller, provided the chiller is placed downstream of the heat exchanger (as shown in Figure 40). As much heat as possible is rejected through the heat exchanger while the chiller handles the rest of the cooling

Chiller System Design and Control

SYS-APM001-EN

Page 76
Image 76
Trane SYS-APM001-EN manual Chilled-Water System Variations, Heat Recovery, Condenser Free Cooling or Water Economizer

SYS-APM001-EN specifications

The Trane SYS-APM001-EN is an advanced control system designed for HVAC (Heating, Ventilation, and Air Conditioning) applications, specifically tailored to enhance energy efficiency and system performance. This comprehensive solution integrates cutting-edge technologies to optimize climate control in commercial and industrial environments.

One of the main features of the SYS-APM001-EN is its intuitive user interface. The system is equipped with a large, easy-to-read display that provides real-time data on system performance, energy usage, and environmental conditions. This user-friendly interface makes it simple for operators to monitor and adjust settings, ensuring optimal comfort levels and efficient energy consumption.

Another key characteristic of the SYS-APM001-EN is its advanced data analytics capabilities. The system collects and analyzes data from various sensors throughout the building, providing insights into occupancy patterns, equipment performance, and energy consumption trends. This data-driven approach allows facility managers to make informed decisions about system adjustments, predictive maintenance, and energy savings.

The SYS-APM001-EN also boasts robust integration capabilities. It can seamlessly connect with a variety of building management systems (BMS) and other third-party devices. This interoperability enables a cohesive operational ecosystem where HVAC systems can communicate and cooperate with lighting, security, and fire safety systems, enhancing overall building efficiency.

Energy efficiency is a hallmark of the SYS-APM001-EN, as it implements sophisticated algorithms to optimize system operation. These algorithms adjust equipment performance in real-time based on current conditions, thereby reducing energy waste and lowering operational costs. The system is designed to support multiple energy-saving strategies, including demand-controlled ventilation and optimal start/stop scheduling.

Additionally, the SYS-APM001-EN is built with scalability in mind, accommodating facilities of various sizes and configurations. Whether it’s a small office building or a large industrial complex, the system can be tailored to meet specific needs, ensuring that HVAC performance aligns with operational goals.

In conclusion, the Trane SYS-APM001-EN is an innovative HVAC control solution that emphasizes user experience, data-driven decision-making, and energy efficiency. With its advanced features and technologies, it is an essential tool for optimizing building performance and enhancing occupant comfort while reducing environmental impact.