System Configurations

evaporator because its selection pressure drop is lower than that of Chiller 2. Load is proportional to flow rate and temperature difference, tons = (gpm × ΔT) / 24. Because Chiller 1 is asked to satisfy a load that exceeds its capacity, it cannot satisfy the chilled water setpoint when the return water temperature equals the design condition. Meanwhile, Chiller 2 is less than fully loaded.

Balancing the system at the design condition, for example, by installing a balancing valve in series with Chiller 1, reduces this problem and works well at design and part load conditions. Alternatively, you could increase the load on Chiller 2 by lowering its chilled water setpoint; however, this complicates system control. The simplest solution is to select chillers that have (nearly) equal pressure drops at their design flow rates, whether the capacities are the same or not.

Table 15. Effect of dissimilar evaporator pressure drops

 

Capacity,

Flow rate, gal/min

Pressure drop, ft H20*

 

 

tons

 

 

 

 

 

 

Selection

Actual

Selection

Actual

Change, %

 

 

 

 

 

 

 

 

 

Chiller 1

500

750

819

12

14.3

+9.2

 

 

 

 

 

 

 

Chiller 2

300

450

381

20

14.3

-15.3

*Values shown here are based on the assumption that pressure drop changes with the square of the flow rate.

System design and control requirements

If experience has taught us anything about implementing variable primary flow, it’s this: The single, most important contribution of the engineer is to

provide written, detailed descriptions of the plant’s sequence of operation.

These descriptions should include control sequences for:

Full- and part-load operation

Minimum and maximum flow-rate management

Transient flow-rate changes

Starting and stopping chillers

Furthermore, this information must be shared early in the design process. Without specific, documented sequences of operation, it is unlikely that the controls provider will devise programs that operate the plant as intended. Bottom line: VPF plants that work result from close, early-on collaboration between the engineer, the chiller manufacturer, and the controls provider. Variable primary flow is a value-added option that can help your clients curb operating costs at a lower initial cost than traditional primary–secondary designs … but only if you select the right components, install them properly, and operate them in accordance with a well-thought-out control scheme.

SYS-APM001-EN

Chiller System Design and Control

61

Page 67
Image 67
Trane SYS-APM001-EN manual System design and control requirements, Effect of dissimilar evaporator pressure drops

SYS-APM001-EN specifications

The Trane SYS-APM001-EN is an advanced control system designed for HVAC (Heating, Ventilation, and Air Conditioning) applications, specifically tailored to enhance energy efficiency and system performance. This comprehensive solution integrates cutting-edge technologies to optimize climate control in commercial and industrial environments.

One of the main features of the SYS-APM001-EN is its intuitive user interface. The system is equipped with a large, easy-to-read display that provides real-time data on system performance, energy usage, and environmental conditions. This user-friendly interface makes it simple for operators to monitor and adjust settings, ensuring optimal comfort levels and efficient energy consumption.

Another key characteristic of the SYS-APM001-EN is its advanced data analytics capabilities. The system collects and analyzes data from various sensors throughout the building, providing insights into occupancy patterns, equipment performance, and energy consumption trends. This data-driven approach allows facility managers to make informed decisions about system adjustments, predictive maintenance, and energy savings.

The SYS-APM001-EN also boasts robust integration capabilities. It can seamlessly connect with a variety of building management systems (BMS) and other third-party devices. This interoperability enables a cohesive operational ecosystem where HVAC systems can communicate and cooperate with lighting, security, and fire safety systems, enhancing overall building efficiency.

Energy efficiency is a hallmark of the SYS-APM001-EN, as it implements sophisticated algorithms to optimize system operation. These algorithms adjust equipment performance in real-time based on current conditions, thereby reducing energy waste and lowering operational costs. The system is designed to support multiple energy-saving strategies, including demand-controlled ventilation and optimal start/stop scheduling.

Additionally, the SYS-APM001-EN is built with scalability in mind, accommodating facilities of various sizes and configurations. Whether it’s a small office building or a large industrial complex, the system can be tailored to meet specific needs, ensuring that HVAC performance aligns with operational goals.

In conclusion, the Trane SYS-APM001-EN is an innovative HVAC control solution that emphasizes user experience, data-driven decision-making, and energy efficiency. With its advanced features and technologies, it is an essential tool for optimizing building performance and enhancing occupant comfort while reducing environmental impact.