Chilled-Water System Variations

One caveat when applying this arrangement is that chillers on the production side of the bypass line will run more often at low part-load conditions. Older chillers or newer chillers with a high cycle point may not have this capability.

Preferential loading - sidestream arrangement

Figure 45. Sidestream preferential loading arrangement

Figure 45 shows a simple modification to the traditional decoupled arrangement. The sidestream arrangement ensures that the chiller piped in the sidestream position still receives the warmest entering-water temperature and can fully load it whenever the chiller plant operates.

Chiller 3

Production

Chiller 2

Bypass Line

Distribution

Chiller 1

Sidestream position receives the warmest return water.

This arrangement is unique because it not only allows preferential loading, but it also permits the cooling device (chiller, heat exchanger, etc.) in the sidestream position to operate at any leaving-water temperature. This configuration precools the system-return water for the chillers downstream, reduces their loads and energy consumption, and decreases the overall operating cost of the chilled-water system.

When cooling devices are located in the return piping of the distribution loop, they do not contribute to system demands for flow. They simply reduce the temperature of return water to the production loop. While this is counterproductive to the principle of striving for the highest possible return water temperature, it is often the best way to obtain free cooling, specialized heat recovery, or reduce the capital cost of ice storage equipment.

Sidestream, decoupled applications are usually most economical when the sidestream chiller is smaller than those on the production side of the bypass line. Since pumping requirements and energy consumption change with modifications to the system arrangement, it is best to use a computerized analysis tool to model the economic effects.

The following are different system configurations that can benefit from the sidestream application.

Sidestream plate-and-frame heat exchanger

A free-cooling heat exchanger may be capable of chilling water to only 48°F [8.9°C] during some periods. Rather than overlook this portion of cooling capacity assistance, the heat exchanger does whatever it can to its portion of the total return stream. Figure 40 on page 70 shows a possible chilled- and condenser-water piping arrangement that allows for simultaneous waterside economizer and chiller operation. Chillers operating downstream can reduce chilled-water temperature further, allowing simultaneous free cooling and mechanical cooling. This configuration increases the hours that the heat exchanger may be used. Since this capacity is brought to bear on the warmest water in the system, it allows the highest heat exchanger effectiveness and has the greatest impact.

74

Chiller System Design and Control

SYS-APM001-EN

Page 80
Image 80
Trane SYS-APM001-EN manual Preferential loading sidestream arrangement, Sidestream plate-and-frame heat exchanger

SYS-APM001-EN specifications

The Trane SYS-APM001-EN is an advanced control system designed for HVAC (Heating, Ventilation, and Air Conditioning) applications, specifically tailored to enhance energy efficiency and system performance. This comprehensive solution integrates cutting-edge technologies to optimize climate control in commercial and industrial environments.

One of the main features of the SYS-APM001-EN is its intuitive user interface. The system is equipped with a large, easy-to-read display that provides real-time data on system performance, energy usage, and environmental conditions. This user-friendly interface makes it simple for operators to monitor and adjust settings, ensuring optimal comfort levels and efficient energy consumption.

Another key characteristic of the SYS-APM001-EN is its advanced data analytics capabilities. The system collects and analyzes data from various sensors throughout the building, providing insights into occupancy patterns, equipment performance, and energy consumption trends. This data-driven approach allows facility managers to make informed decisions about system adjustments, predictive maintenance, and energy savings.

The SYS-APM001-EN also boasts robust integration capabilities. It can seamlessly connect with a variety of building management systems (BMS) and other third-party devices. This interoperability enables a cohesive operational ecosystem where HVAC systems can communicate and cooperate with lighting, security, and fire safety systems, enhancing overall building efficiency.

Energy efficiency is a hallmark of the SYS-APM001-EN, as it implements sophisticated algorithms to optimize system operation. These algorithms adjust equipment performance in real-time based on current conditions, thereby reducing energy waste and lowering operational costs. The system is designed to support multiple energy-saving strategies, including demand-controlled ventilation and optimal start/stop scheduling.

Additionally, the SYS-APM001-EN is built with scalability in mind, accommodating facilities of various sizes and configurations. Whether it’s a small office building or a large industrial complex, the system can be tailored to meet specific needs, ensuring that HVAC performance aligns with operational goals.

In conclusion, the Trane SYS-APM001-EN is an innovative HVAC control solution that emphasizes user experience, data-driven decision-making, and energy efficiency. With its advanced features and technologies, it is an essential tool for optimizing building performance and enhancing occupant comfort while reducing environmental impact.