System Issues and Challenges

situation. Electrical generation can be outsourced to avoid internal capitalization.

A variation of electrical generation uses an engine indirectly- or directly- coupled to a chiller. Either variation produces chilled water using an alternative fuel such as natural gas or fuel oil. The indirect-coupling method allows the chiller to operate using an alternative fuel or electricity from the grid. An engine directly-coupled to a chiller can only run using the alternative fuel.

Alternative fuel

Some designers prefer to employ chillers that use fossil fuels or perhaps renewable fuels. Examples are absorption chillers using natural gas, steam, hot water, landfill gas, biodiesel, or waste-to-energy boilers. Plants with these chillers, discussed in detail elsewhere30, allow the owner to take advantage of expected fuel rate separations.

Thermal storage

Another successfully applied alternative-energy source is thermal storage. Chillers make either ice or chilled water during times of lower electricity costs. The energy is stored in tanks and then discharged to satisfy cooling loads during times of high electrical costs. Other manuals and an Engineers Newsletter describe the use of thermal storage in detail. 31, 32, 33, 34, 35

Use any of these technologies to provide value to the building owner through judicious use of alternative fuels.

Plant Expansion

Plant expansion can be performed easily in either a primary–secondary or variable-primary-flow system by adding another chiller and pump to the system. The two major considerations will be whether the chilled-water distribution pipes will be able to handle the flow and how to install the new chiller while other chillers are still providing cooling. When the new system flow rate complies with good piping practice and the pumps can deliver the water, the process works well.

To maintain chilled-water flow during installation of a new chiller, some plants are constructed with piping stubs in place for the new chiller. In this way, the new chiller can be installed while the system is still operating, then the valves in the stubs can be opened.

When decoupled systems are used on large campus-type systems, added loads are often located some distance away from the original loads. Yet, planners like the idea of somehow hooking the new loads to the existing system. The “double-ended” system discussed in “Chiller sequencing in a double-ended decoupled system” on page 54 is one way of handling this requirement.

SYS-APM001-EN

Chiller System Design and Control

83

Page 89
Image 89
Trane SYS-APM001-EN manual Plant Expansion, Alternative fuel, Thermal storage

SYS-APM001-EN specifications

The Trane SYS-APM001-EN is an advanced control system designed for HVAC (Heating, Ventilation, and Air Conditioning) applications, specifically tailored to enhance energy efficiency and system performance. This comprehensive solution integrates cutting-edge technologies to optimize climate control in commercial and industrial environments.

One of the main features of the SYS-APM001-EN is its intuitive user interface. The system is equipped with a large, easy-to-read display that provides real-time data on system performance, energy usage, and environmental conditions. This user-friendly interface makes it simple for operators to monitor and adjust settings, ensuring optimal comfort levels and efficient energy consumption.

Another key characteristic of the SYS-APM001-EN is its advanced data analytics capabilities. The system collects and analyzes data from various sensors throughout the building, providing insights into occupancy patterns, equipment performance, and energy consumption trends. This data-driven approach allows facility managers to make informed decisions about system adjustments, predictive maintenance, and energy savings.

The SYS-APM001-EN also boasts robust integration capabilities. It can seamlessly connect with a variety of building management systems (BMS) and other third-party devices. This interoperability enables a cohesive operational ecosystem where HVAC systems can communicate and cooperate with lighting, security, and fire safety systems, enhancing overall building efficiency.

Energy efficiency is a hallmark of the SYS-APM001-EN, as it implements sophisticated algorithms to optimize system operation. These algorithms adjust equipment performance in real-time based on current conditions, thereby reducing energy waste and lowering operational costs. The system is designed to support multiple energy-saving strategies, including demand-controlled ventilation and optimal start/stop scheduling.

Additionally, the SYS-APM001-EN is built with scalability in mind, accommodating facilities of various sizes and configurations. Whether it’s a small office building or a large industrial complex, the system can be tailored to meet specific needs, ensuring that HVAC performance aligns with operational goals.

In conclusion, the Trane SYS-APM001-EN is an innovative HVAC control solution that emphasizes user experience, data-driven decision-making, and energy efficiency. With its advanced features and technologies, it is an essential tool for optimizing building performance and enhancing occupant comfort while reducing environmental impact.