System Configurations

Check valves

Some designers recommend the installation of a check valve in the bypass line of a primary–secondary system to eliminate the possibility of deficit flow in the bypass line. The premise is that if there is a system problem (low temperature differential), the check valve will put the primary and secondary pumps in series and pump more water through the chiller, thus balancing the primary and secondary flow requirements. This is not universally accepted.

Coad14 states:

One constraint is that if the system is designed as variable flow and is experiencing operating problems related to low return water temperatures, the solution is not in the plant but rather in the load.

and

One solution that has been suggested is to install a check valve in the plant common pipe or decoupling line circuit

However, to be realistic, all that the check valve can do is assure that no water bypasses the chillers, which in turn has the effect of increasing flow in the chiller. Thus with the installation of the check valve must be an algorithm to either slow down system pump(s) when flow increases beyond the design maximum for the on chiller or turn on additional chillers. Thus the check valve solution offers its own problems and many designers feel very uncomfortable with forcing pumps into series operation without the benefit of understanding the full impact thereof.

This manual does not recommend the use of check valves in the bypass line.

Figure 28. Decoupled arrangement

CV Pump

Chiller 3

CV Pump

Chiller 2

CV Pump

Chiller 1

 

Production

Bypass Line

Distribution

 

VV Pump ~

The unrestricted bypass line hydraulically decouples, or separates, the production and distribution pumps so that they cannot operate in a series coupled pumping arrangement.

Although the two pumping systems are independent, they have three things in common:

bypass piping,

no-flow static head (from the building water column), and

water.

Changes in flows or pressures, due to variations in dynamic head or the number of chillers operating, cannot cross the bypass line.

The extent of decoupling depends solely on the restriction (or lack of restriction) in the bypass pipe. Total decoupling is accomplished only if the bypass piping has zero pressure loss at any flow. Since this is not possible, some insignificant pump coupling will exist. The important issue is to keep the bypass piping free of unnecessary restrictions such as check valves (see sidebar).

46

Chiller System Design and Control

SYS-APM001-EN

Page 52
Image 52
Trane SYS-APM001-EN manual Check valves

SYS-APM001-EN specifications

The Trane SYS-APM001-EN is an advanced control system designed for HVAC (Heating, Ventilation, and Air Conditioning) applications, specifically tailored to enhance energy efficiency and system performance. This comprehensive solution integrates cutting-edge technologies to optimize climate control in commercial and industrial environments.

One of the main features of the SYS-APM001-EN is its intuitive user interface. The system is equipped with a large, easy-to-read display that provides real-time data on system performance, energy usage, and environmental conditions. This user-friendly interface makes it simple for operators to monitor and adjust settings, ensuring optimal comfort levels and efficient energy consumption.

Another key characteristic of the SYS-APM001-EN is its advanced data analytics capabilities. The system collects and analyzes data from various sensors throughout the building, providing insights into occupancy patterns, equipment performance, and energy consumption trends. This data-driven approach allows facility managers to make informed decisions about system adjustments, predictive maintenance, and energy savings.

The SYS-APM001-EN also boasts robust integration capabilities. It can seamlessly connect with a variety of building management systems (BMS) and other third-party devices. This interoperability enables a cohesive operational ecosystem where HVAC systems can communicate and cooperate with lighting, security, and fire safety systems, enhancing overall building efficiency.

Energy efficiency is a hallmark of the SYS-APM001-EN, as it implements sophisticated algorithms to optimize system operation. These algorithms adjust equipment performance in real-time based on current conditions, thereby reducing energy waste and lowering operational costs. The system is designed to support multiple energy-saving strategies, including demand-controlled ventilation and optimal start/stop scheduling.

Additionally, the SYS-APM001-EN is built with scalability in mind, accommodating facilities of various sizes and configurations. Whether it’s a small office building or a large industrial complex, the system can be tailored to meet specific needs, ensuring that HVAC performance aligns with operational goals.

In conclusion, the Trane SYS-APM001-EN is an innovative HVAC control solution that emphasizes user experience, data-driven decision-making, and energy efficiency. With its advanced features and technologies, it is an essential tool for optimizing building performance and enhancing occupant comfort while reducing environmental impact.