System Configurations

Figure 35. Temperature-sensing

D (Required)

(Optional) A

C

(Optional)

E (Optional)

(Required) B

Return Main

Supply Main

show a deficit and the pump will be cycled on again. The amount of surplus flow necessary depends on the size of the chiller to be shut off. The surplus flow must exceed a certain quantity before shutting off a chiller–pump pair. If all chillers are equal in size, the surplus-flow signal can be a constant value. Control of the number of chillers is accomplished by simply noting the direction of flow in the bypass line. Thus, the system operates as a flow- based demand system, not a temperature-based demand system.

Flow-based control

To properly operate a primary–secondary system, an indication of direction of flow and the flow rate through the bypass line is necessary. This may be done either directly or indirectly. When bypass flow is from supply to return, it is called surplus. Bypass flow moving from return to supply is termed deficit.

Flow-sensing

Direct flow-sensing in the bypass line can be accomplished in several ways. A number of flow-metering technologies have been used successfully. These include Pitot tube, venturi, orifice plate, differential pressure, turbine, impeller, vortex, magnetic, and ultrasonic transit-time. The accuracy, ease of installation, maintainability, and cost of meter technologies vary widely. To give accurate results, a flow meter must be calibrated periodically, with some flow meters requiring more-frequent calibration than others. When using flow-sensing devices, it is important to understand the range of flows a device can properly measure and its calibration requirements. The readings will only be as good as the instrumentation. Also note that many flow- measurement devices require several diameters of straight pipe for accurate readings.

Temperature-sensing

Mixed water streams at the outlets of the supply- and return-water tees (Figure 35) can be used to indirectly determine the supply–demand relationship. Standard temperature-mixing equations can be used to determine the exact amount of surplus or deficit flow in the bypass line.

The five temperatures sensed—at points A, B, C, D, and E—are received by a programmable controller. (Some control systems use only two sensors, at points B and D, in conjunction with “pre-programmed” algebraic mixing equations.) Processing software applies the classic mixing equations and determines the resulting action to properly control the chilled-water system.

Note that sensor D needs to be very accurate, especially if there are many chillers, since small temperature changes may warrant chiller sequencing. Either temperature-sensing strategy has a cost and flexibility advantage if a building or chiller-plant management system already exists or is planned.

SYS-APM001-EN

Chiller System Design and Control

51

Page 57
Image 57
Trane SYS-APM001-EN manual Flow-based control, Flow-sensing, Temperature-sensing

SYS-APM001-EN specifications

The Trane SYS-APM001-EN is an advanced control system designed for HVAC (Heating, Ventilation, and Air Conditioning) applications, specifically tailored to enhance energy efficiency and system performance. This comprehensive solution integrates cutting-edge technologies to optimize climate control in commercial and industrial environments.

One of the main features of the SYS-APM001-EN is its intuitive user interface. The system is equipped with a large, easy-to-read display that provides real-time data on system performance, energy usage, and environmental conditions. This user-friendly interface makes it simple for operators to monitor and adjust settings, ensuring optimal comfort levels and efficient energy consumption.

Another key characteristic of the SYS-APM001-EN is its advanced data analytics capabilities. The system collects and analyzes data from various sensors throughout the building, providing insights into occupancy patterns, equipment performance, and energy consumption trends. This data-driven approach allows facility managers to make informed decisions about system adjustments, predictive maintenance, and energy savings.

The SYS-APM001-EN also boasts robust integration capabilities. It can seamlessly connect with a variety of building management systems (BMS) and other third-party devices. This interoperability enables a cohesive operational ecosystem where HVAC systems can communicate and cooperate with lighting, security, and fire safety systems, enhancing overall building efficiency.

Energy efficiency is a hallmark of the SYS-APM001-EN, as it implements sophisticated algorithms to optimize system operation. These algorithms adjust equipment performance in real-time based on current conditions, thereby reducing energy waste and lowering operational costs. The system is designed to support multiple energy-saving strategies, including demand-controlled ventilation and optimal start/stop scheduling.

Additionally, the SYS-APM001-EN is built with scalability in mind, accommodating facilities of various sizes and configurations. Whether it’s a small office building or a large industrial complex, the system can be tailored to meet specific needs, ensuring that HVAC performance aligns with operational goals.

In conclusion, the Trane SYS-APM001-EN is an innovative HVAC control solution that emphasizes user experience, data-driven decision-making, and energy efficiency. With its advanced features and technologies, it is an essential tool for optimizing building performance and enhancing occupant comfort while reducing environmental impact.