System Issues and Challenges

Flow Rate = the system flow rate, in gpm [L/s]

Loop Time = the time it takes for fluid to leave the chiller, move through the system, and return to the chiller, allowing for stable system operation, in minutes [seconds]

Chiller response to changing conditions

Follow the manufacturer’s advice for the specific chiller being considered. This determines the absolute minimum amount of water the loop requires. However, this is the chiller minimum, not the system minimum, as discussed in the next section. Many of today’s chillers have controls that respond quickly to changing conditions. Some chillers can react to a change in return water temperature in one minute; other chillers may require five or more minutes to react. The response varies, depending on chiller type and design.

System response to changing conditions

It is important to understand that even if a chiller can respond to rapidly changing conditions, the interaction between the chiller, system pumps, and control valves may define the minimum loop time. These components may “hunt” if the system conditions change too rapidly. Review these interactions to ensure that system control will be stable.

Example

A specific chiller requires at least two minutes of water in the loop to operate properly. However, after considering the system interaction, it’s decided that a five-minute loop time will work best. The system design flow rate is 960 gpm [60.6 L/s].

Required Volume = 960 gpm × 5 minutes = 4,800 gallons = 60 L/s × 5 minutes × (60 seconds/1 minute)= 18,180 liters

If the volume of fluid in the evaporator bundle, piping, and coils is less than the required volume, a tank should be added to increase loop volume. For optimal stability, the tank should be placed in the return water position and be designed to mix the returning-water stream with the water currently in the tank. In systems with no bypass, the tank may be placed in the supply chilled- water position.

Alternatively, the designer could:

increase pipe sizes (increases system volume and reduces pump energy)

design system for a lower flow rate (lowers required volume and reduces pumping energy, especially when same-sized pipes are used)

80

Chiller System Design and Control

SYS-APM001-EN

Page 86
Image 86
Trane SYS-APM001-EN manual System Issues and Challenges, Chiller response to changing conditions, Example

SYS-APM001-EN specifications

The Trane SYS-APM001-EN is an advanced control system designed for HVAC (Heating, Ventilation, and Air Conditioning) applications, specifically tailored to enhance energy efficiency and system performance. This comprehensive solution integrates cutting-edge technologies to optimize climate control in commercial and industrial environments.

One of the main features of the SYS-APM001-EN is its intuitive user interface. The system is equipped with a large, easy-to-read display that provides real-time data on system performance, energy usage, and environmental conditions. This user-friendly interface makes it simple for operators to monitor and adjust settings, ensuring optimal comfort levels and efficient energy consumption.

Another key characteristic of the SYS-APM001-EN is its advanced data analytics capabilities. The system collects and analyzes data from various sensors throughout the building, providing insights into occupancy patterns, equipment performance, and energy consumption trends. This data-driven approach allows facility managers to make informed decisions about system adjustments, predictive maintenance, and energy savings.

The SYS-APM001-EN also boasts robust integration capabilities. It can seamlessly connect with a variety of building management systems (BMS) and other third-party devices. This interoperability enables a cohesive operational ecosystem where HVAC systems can communicate and cooperate with lighting, security, and fire safety systems, enhancing overall building efficiency.

Energy efficiency is a hallmark of the SYS-APM001-EN, as it implements sophisticated algorithms to optimize system operation. These algorithms adjust equipment performance in real-time based on current conditions, thereby reducing energy waste and lowering operational costs. The system is designed to support multiple energy-saving strategies, including demand-controlled ventilation and optimal start/stop scheduling.

Additionally, the SYS-APM001-EN is built with scalability in mind, accommodating facilities of various sizes and configurations. Whether it’s a small office building or a large industrial complex, the system can be tailored to meet specific needs, ensuring that HVAC performance aligns with operational goals.

In conclusion, the Trane SYS-APM001-EN is an innovative HVAC control solution that emphasizes user experience, data-driven decision-making, and energy efficiency. With its advanced features and technologies, it is an essential tool for optimizing building performance and enhancing occupant comfort while reducing environmental impact.