Kawasaki KS152JB PX0, EX0, Pgsrv, Egsrv 2BH, PT0, ET0 0BH, Pgsre, Egsre, PDMA0, EDMA0 3BH, PX1

Page 18

KS152JB Universal Communications Controller Technical Specifications

The interrupt flags are sampled in S5P2 of every machine cycle. In the next machine cycle, the sampled interrupts are polled and their priority is resolved. If certain conditions are met then the hardware will execute an internally generated LCALL instruction which will vector the process to the appropriate interrupt vector address. The conditions for generating the LCALL are

1.An interrupt of equal or higher priority is not currently being serviced.

2.The current polling cycle is the last machine cycle of the instruction currently being executed.

3.The current instruction does not involve a write to IP or IE registers and is not a RETI.

If any of these conditions are not met, then the LCALL will not be generated. The polling cycle is

repeated every machine cycle, with the interrupts sampled at S5P2 in the previous machine cycle. If an interrupt flag is active in one cycle but not responded to, and is not active when the above conditions are met, the denied interrupt will not be serviced. This means that active interrupts are not remembered, every polling cycle is new.

The processor responds to a valid interrupts by executing an LCALL instruction to the appropriate service routine. This may or may not clear the flag which caused the interrupt. In case of Timer interrupts, the TF0 or TF1 flags, are cleared by hardware whenever the processor vectors to the appropriate timer service routine. In case of External interrupt, INT0 and INT1, the flags are cleared only if they are edge triggered. In case of Local Serial interrupts, the flags are not cleared by hardware. The hardware LCALL behaves exactly like the software LCALL instruction. This instruction saves the Program Counter contents onto the Stack, but does not save the Program Sta- tus Word PSW. The PC is reloaded with the vector address of that interrupt which caused the LCALL. These vector address for the different sources are as follows

Table 5:

Priority

Priority

Priority

Interrupt

Interrupt

Vector

Symbolic

Symbolic

sequence

address

name

Address

name

Name

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

IP.0

PX0

IE.0

EX0

03H

 

 

 

 

 

 

2

IPN1.0

PGSRV

IEN1.0

EGSRV

2BH

 

 

 

 

 

 

3

IP.1

PT0

IE.1

ET0

0BH

 

 

 

 

 

 

4

IPN1.1

PGSRE

IEN1.1

EGSRE

33H

 

 

 

 

 

 

5

IPN1.2

PDMA0

IEN1.2

EDMA0

3BH

 

 

 

 

 

 

6

IP.2

PX1

IE.2

EX1

13H

 

 

 

 

 

 

7

IPN1.3

PGSTV

IEN1.3

EGSTV

43H

 

 

 

 

 

 

Kawasaki LSI USA, Inc.

Page 18 of 120

Ver. 0.9 KS152JB2

Image 18
Contents Introduction Technical Specifications Name Description Port Pin DescriptionPIN Description Pin Name Alternate FunctionXTAL1 XTAL2RST Eben ALEPsen EpsenSpecial function Registers SFR map for the cpuReset Timing Reset Values of the SFRs Sbuf Indeterminate Tmod ConfigurationsScon PconPort 0 I/O Pad Port 2 I/O Pad Port bit I/O PadsPorts 4,5 Comments ProgramPsen Epsen Fetch viaTIMER/COUNTERS Tmod Timer/Counter Mode Control RegisterTcon Timer/Counter Control Register ModeTimer/Counter in Mode Timer/Counter 0 in Mode IE Interrupt Enable RegisterInterrupts Priority Level Structure Egste EDMA1 Egstv EDMA0 Egsre Egsrv Pgste PDMA1 Pgstv PDMA0 Pgsre PgsrvPgsrv PX0EX0 Egsrv 2BHPT1 PDMA1EDMA1 ET1 1BHKawasaki LSI USA, Inc Ver .9 KS152JB2 Power Down and Idle Status of the External Pins during Idle and Power DownALE Psen Pcon Power Control Register Smod IDLLocal Serial Channel Local Serial Port Mode ControllerSerial Port Mode Mode Load Sbuf Baud Rates Timer 1 generated commonly used Baud rates SmodMHZ SINGLE-STEP Operation JNBReti Kawasaki LSI USA Inc Global Serial Channel Introduction11/IDLE CRC None DC JAM CRCCsma Sdlc 11/IDLEExternal clock Internal clock Control cpu Control dma Raw Receive Raw Transmit CSMA/CD Overview CSMA/CD Frame FormatPreamble BOF Address Info CRC EOF Kawasaki LSI USA, Inc Ver .9 KS152JB2 23 24 Interframe Space Collision Detection CSMA/CD Data EncodingManchester Encoding BIT Time Jitter ToleranceNarrow Pulses Missing 0-to-1 TransitionUnexpected 1-to-0 Transition Response to a Detected Collision What the GSC was doing Resolution of CollisionsGSC Inactive TfifoBackoff DCRAlgorithm Random Backoff Prbs Tcdcnt Load Bkoff Slot Clock MyslotBKOFF= Myslot Deterministic Backoff Hardware Based Acknowledge Kawasaki LSI USA, Inc Ver .9 KS152JB2 Sdlc Frame Format BOF Address Control Info CRC EOFKawasaki LSI USA, Inc Ver .9 KS152JB2 Data Encoding Nrzi BIT TimeBIT STUFFING/STRIPPING Sending Abort Character Line IdleAcknowledgement Multi-Drop Network PRIMARY/SECONDARY StationsPoint-to-point Network Ring NetworkSdlc Hdlc Using a Preamble in SdlcHDLC/SDLC Comparison User Defined ProtocolsLine Discipline Planning for Network Changes and ExpansionsDMA Servicing of GSC Channels Kawasaki LSI USA, Inc Ver .9 KS152JB2 Baud Rate Initialization Test Modes External Driver InterfaceJitter Receive BIT Time Received Local Value Manchester Encoding BIT TimeReceive Sampling Rate Received Transmit WaveformsReceiver Clock Recovery CSMA/CD Clock RecoveryRcbat Crce Determining Receiver ErrorsExternal Clocking AddressingDetermining Line Discipline 2 CPU/DMA Control of the GSCCollisions and Backoff What the GSC was doing Response GSC Register Descriptions Successful Ending of Transmissions and ReceptionsGMOD84H Xtclk PL1 PL0 PL1 PL0 Length BitsKawasaki LSI USA, Inc Ver .9 KS152JB2 DCJ DCR SA5 SA4 SA3 SA2 SA1 SA0 ARB REQ Garen Xrclk Gfien IDLRcabt Crce RDN Rfne Gren Haben Kawasaki LSI USA, Inc Ver .9 KS152JB2 LNI Noack Tcdt TDN Tfnf TEN DMA Kawasaki LSI USA, Inc Ver .9 KS152JB2 DMA Operation DMA with the 80C152DMA Registers DAS IDA Alternate Cycle ModeBurst Mode SAS ISASerial Port Demand Mode External Demand ModePCH P2 SFR DMA Cycle Resume Program Execution Timing Diagrams12 OSC.PERIODS ALE Psen P1 Inst Float DMA Transfer from Internal Memory to Internal Memory12 OSC. Periods ALE Psen Inst DMA Data OUT PCL Inst PCH DMA Cycle 12 OSC. Periods Resume Program Execution ALE PsenDMA Cycle Resume Program Execution Request Mode Arbiter ModeHold/Hold Acknowledge Using the HOLD/HLDA Acknowledge ARB REQALE ARB If Hlda = ALE AEQ ALE REQ Internal Logic of the ArbiterDmxrq Internal Logic of the Requester DMA Arbitration Kawasaki LSI USA, Inc.oup, Inc Ver .9 KS152JB2 Kawasaki LSI USA, Inc Ver .9 KS152JB2 Kawasaki LSI USA, Inc Ver .9 KS152JB2 DMA Arbitration with Hold/Hold Ack Summary of DMA Control Bits DAS IDA SAS ISA DoneInterrupt Structure IE0 TI+RI ET1 EX1 ET0 EX0PT1 PX1 PT0 PX0 IPN1GSC Transmitter Error Conditions Transmit Error Flags Logic for Clearing TEN, Setting TDNGSC Receiver Error Conditions Glossary Kawasaki LSI USA, Inc Ver .9 KS152JB2 DCON0/1 092H,093H Xtclk PL1 PL0 Kawasaki LSI USA, Inc 102 Ver .9 KS152JB2 Kawasaki LSI USA, Inc 103 Ver .9 KS152JB2 PT1 PX1 PT0 EX0 Myslot 0F5H DCJ DCR SA5 SA4 SA3 SA2 SA1 SA0 Smod ARB REQ Garen Xrclk Gfien IDL OVR Rcabt Crce RDN Rfne Gren Haben Kawasaki LSI USA, Inc 108 Ver .9 KS152JB2 SM0 SM1 SM2 REN TB8 RB8 TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0Gate Kawasaki LSI USA, Inc 111 Ver .9 KS152JB2 Data Pointer LOW PortStack Pointer DPL.7 DPL.6 DPL5 DPL.4 DPL.3 DPL.2 DPL.1 DPL.0DPH.7 DPH.6 DPH.5 DPH.4 DPH.3 DPH.2 DPH.1 DPH.0 Timer ControlData Pointer High DPHTimer 0 LSB Timer Mode ControlGate Timer Timer 1 LSBTimer 0 MSB Timer 1 MSBSerial Data Buffer Serial Port ControlSM0 SBUF.7Program Status Word RS1 RS0Accumulator ACC.7 ACC.6 ACC.5 ACC.4 ACC.3 ACC.2 ACC.1 ACC.0Kawasaki LSI USA, Inc 119 Ver .9 KS152JB2 Kawasaki LSI USA, Inc 120 Ver .9 KS152JB2