Kawasaki 80C152, KS152JB, 80C51 technical specifications What the GSC was doing Response, Tfifo

Page 67

KS152JB Universal Communications Controller Technical Specifications

expected. When this type of collision occurs the GSC automatically handles the retransmission attempts for as many as eight tries. If on the eighth attempt a collision occurs, the transmitter is disabled, although the jam and back off are performed. If enabled, the CPU is then interrupted. The user software should then determine what action to take. The possibilities range from just reporting the error and aborting transmission to reinitializing the serial channel registers and attempt retransmission.

If less than eight attempts are desired TCDCNT can be loaded with some value which will reduce the number of collisions possible before TCDCNT overflows. The value loaded should consist of all 1s as the least significant bits, e.g. 7, 0FH, 3FH. A solid block of 1s is suggested because TCD- CNT is used as a mask when generating the random slot number assignment. The TCDCNT reg- ister operates by shifting the contents one bit position to the left as each collision is detected. As each shift occurs a 1 is loaded into the LSB. When TCDCNT overflows, GSC operation stops and the CPU is notified by the setting of the TCDT bit which can flag an interrupt.

The amount of time that the GSC has before it must be ready to retransmit after a collision is determined by the mode which is selected. The mode is determined M0 (GMOD.5) and M1 (GMOD.6). If M0 and M1 equal 0,0 (normal backoff) then the minimum period before retrans- mission will be either the interframe space or the backoff period, whichever is longer. If M0 and M1 equal 1,1 (alternate backoff) then the minimum period before retransmission will be the inter- frame space plus the backoff period. Both of these are shown in table below. Alternate backoff must be enabled if using deterministic resolution. If the GSC is not ready to retransmit by the time its assigned slot becomes available, the slot time is lost and the station must wait until the colli- sion resolution time period has passed.

Table 13:

What the GSC was doing

Response

 

 

nothing

None, Unless DCR =1.

 

If DCR = 1, begin DCR countdown

 

 

Receiving a Frame, first byte not in RFIFO yet.

None, unless DCR = 1.

 

If DCR = 1, begin DCR countdown.

 

 

Receiving a Frame, first byte already in RFIFO.

Set RCABT, clear GREN.

 

If DCR = 1, begin DCR countdown.

 

 

Transmitting a Frame, first byte still in TFIFO

Execute jam/backoff.

 

Restart if collision count< 8.

 

 

Transmitting a Frame, first byte already taken from

Execute jam/backoff.

TFIFO

Set TCDT, clear TEN.

 

 

Instead of waiting for the collision resolution to pass, the transmission could be aborted. The deci- sion to abort is usually dependent on the number of stations on the link and how many collisions have already occurred. The number of collisions can be obtained by examining the register, TCD- CNT. The abort is normally implemented by clearing TEN. The new transmission begins by set- ting TEN and loading TFIFO. The minimum amount of time available to initiate a retransmission

Kawasaki LSI USA, Inc.

Page 67 of 120

Ver. 0.9 KS152JB2

Image 67
Contents Introduction Technical Specifications Pin Name Alternate Function Pin DescriptionPIN Description Name Description PortXTAL2 XTAL1RST Epsen ALEPsen EbenSFR map for the cpu Special function RegistersReset Timing Reset Values of the SFRs Pcon ConfigurationsScon Sbuf Indeterminate TmodPort bit I/O Pads Port 0 I/O Pad Port 2 I/O PadPorts 4,5 Fetch via ProgramPsen Epsen CommentsTmod Timer/Counter Mode Control Register TIMER/COUNTERSMode Tcon Timer/Counter Control RegisterTimer/Counter in Mode IE Interrupt Enable Register Timer/Counter 0 in ModeInterrupts Priority Level Structure Pgste PDMA1 Pgstv PDMA0 Pgsre Pgsrv Egste EDMA1 Egstv EDMA0 Egsre EgsrvEgsrv 2BH PX0EX0 PgsrvET1 1BH PDMA1EDMA1 PT1Kawasaki LSI USA, Inc Ver .9 KS152JB2 Status of the External Pins during Idle and Power Down Power Down and IdleALE Psen Smod IDL Pcon Power Control RegisterLocal Serial Channel Controller Local Serial Port ModeSerial Port Mode Mode Load Sbuf Baud Rates Smod Timer 1 generated commonly used Baud ratesMHZ JNB SINGLE-STEP OperationReti Kawasaki LSI USA Inc Introduction Global Serial ChannelDC JAM CRC 11/IDLE CRC None11/IDLE Csma SdlcExternal clock Internal clock Control cpu Control dma Raw Receive Raw Transmit CSMA/CD Frame Format CSMA/CD OverviewPreamble BOF Address Info CRC EOF Kawasaki LSI USA, Inc Ver .9 KS152JB2 23 24 Interframe Space Jitter Tolerance CSMA/CD Data EncodingManchester Encoding BIT Time Collision DetectionMissing 0-to-1 Transition Narrow PulsesUnexpected 1-to-0 Transition Tfifo Resolution of CollisionsGSC Inactive Response to a Detected Collision What the GSC was doingDCR BackoffAlgorithm Prbs Tcdcnt Load Bkoff Slot Clock Myslot Random BackoffBKOFF= Myslot Deterministic Backoff Hardware Based Acknowledge Kawasaki LSI USA, Inc Ver .9 KS152JB2 BOF Address Control Info CRC EOF Sdlc Frame FormatKawasaki LSI USA, Inc Ver .9 KS152JB2 Nrzi BIT Time Data EncodingBIT STUFFING/STRIPPING Line Idle Sending Abort CharacterAcknowledgement Ring Network PRIMARY/SECONDARY StationsPoint-to-point Network Multi-Drop NetworkUser Defined Protocols Using a Preamble in SdlcHDLC/SDLC Comparison Sdlc HdlcPlanning for Network Changes and Expansions Line DisciplineDMA Servicing of GSC Channels Kawasaki LSI USA, Inc Ver .9 KS152JB2 Baud Rate Initialization External Driver Interface Test ModesJitter Receive Transmit Waveforms Local Value Manchester Encoding BIT TimeReceive Sampling Rate Received BIT Time ReceivedCSMA/CD Clock Recovery Receiver Clock RecoveryAddressing Determining Receiver ErrorsExternal Clocking Rcbat Crce2 CPU/DMA Control of the GSC Determining Line DisciplineCollisions and Backoff What the GSC was doing Response Successful Ending of Transmissions and Receptions GSC Register DescriptionsPL1 PL0 Length Bits GMOD84H Xtclk PL1 PL0Kawasaki LSI USA, Inc Ver .9 KS152JB2 ARB REQ Garen Xrclk Gfien IDL DCJ DCR SA5 SA4 SA3 SA2 SA1 SA0Rcabt Crce RDN Rfne Gren Haben Kawasaki LSI USA, Inc Ver .9 KS152JB2 LNI Noack Tcdt TDN Tfnf TEN DMA Kawasaki LSI USA, Inc Ver .9 KS152JB2 DMA with the 80C152 DMA OperationDMA Registers SAS ISA Alternate Cycle ModeBurst Mode DAS IDAExternal Demand Mode Serial Port Demand ModeDMA Transfer from Internal Memory to Internal Memory Timing Diagrams12 OSC.PERIODS ALE Psen P1 Inst Float PCH P2 SFR DMA Cycle Resume Program ExecutionDMA Cycle 12 OSC. Periods Resume Program Execution ALE Psen 12 OSC. Periods ALE Psen Inst DMA Data OUT PCL Inst PCHDMA Cycle Resume Program Execution Arbiter Mode Request ModeHold/Hold Acknowledge ARB REQ Using the HOLD/HLDA AcknowledgeInternal Logic of the Arbiter ALE ARB If Hlda = ALE AEQ ALE REQDmxrq Internal Logic of the Requester DMA Arbitration Kawasaki LSI USA, Inc.oup, Inc Ver .9 KS152JB2 Kawasaki LSI USA, Inc Ver .9 KS152JB2 Kawasaki LSI USA, Inc Ver .9 KS152JB2 DMA Arbitration with Hold/Hold Ack DAS IDA SAS ISA Done Summary of DMA Control BitsInterrupt Structure IE0 ET1 EX1 ET0 EX0 TI+RIIPN1 PT1 PX1 PT0 PX0Transmit Error Flags Logic for Clearing TEN, Setting TDN GSC Transmitter Error ConditionsGSC Receiver Error Conditions Glossary Kawasaki LSI USA, Inc Ver .9 KS152JB2 DCON0/1 092H,093H Xtclk PL1 PL0 Kawasaki LSI USA, Inc 102 Ver .9 KS152JB2 Kawasaki LSI USA, Inc 103 Ver .9 KS152JB2 PT1 PX1 PT0 EX0 Myslot 0F5H DCJ DCR SA5 SA4 SA3 SA2 SA1 SA0 Smod ARB REQ Garen Xrclk Gfien IDL OVR Rcabt Crce RDN Rfne Gren Haben Kawasaki LSI USA, Inc 108 Ver .9 KS152JB2 TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 SM0 SM1 SM2 REN TB8 RB8Gate Kawasaki LSI USA, Inc 111 Ver .9 KS152JB2 DPL.7 DPL.6 DPL5 DPL.4 DPL.3 DPL.2 DPL.1 DPL.0 PortStack Pointer Data Pointer LOWDPH Timer ControlData Pointer High DPH.7 DPH.6 DPH.5 DPH.4 DPH.3 DPH.2 DPH.1 DPH.0Timer 1 LSB Timer Mode ControlGate Timer Timer 0 LSBTimer 1 MSB Timer 0 MSBSBUF.7 Serial Port ControlSM0 Serial Data BufferRS1 RS0 Program Status WordACC.7 ACC.6 ACC.5 ACC.4 ACC.3 ACC.2 ACC.1 ACC.0 AccumulatorKawasaki LSI USA, Inc 119 Ver .9 KS152JB2 Kawasaki LSI USA, Inc 120 Ver .9 KS152JB2