Kawasaki KS152JB, 80C152, 80C51 Timer/Counters, Tmod Timer/Counter Mode Control Register

Page 12

KS152JB Universal Communications Controller Technical Specifications

During External Memory Accesses, both Ports 0 and 2 are used for Address/ Data transfer and therefore cannot be used for general I/O purposes. During external program fetches, Port 2 uses strong pullups to emit 1s.

2.7 TIMER/COUNTERS

This has two 16-bit Timer/Counters, TM0 andTM1. Each of these Timer/Counters has two 8 bit registers which form the 16 bit counting register. For Timer/Counter TM0 they are TH0, the upper 8 bits register and TL0, the lower 8 bit register. Similarly Timer/Counter TM1 has two 8 bit regis- ters, TH1 and TL1 and Timer/Counter

When configured as a “Timer”, the register is incremented once every machine cycle. Since a machine cycle consists of 12 clock periods, the timer clock can be thought of as 1/12 of the master clock. In the “Counter” mode, the register is incremented on the falling edge of the external input pin, T0 in case of TM0, T1 for TM1. The T0, T1 inputs are sampled in every machine cycle at S5P2. If the sampled value is high in one machine cycle and low in the next, then a valid high to low transition on the pin is recognized and the count register is incremented. Since it takes two machine cycles to recognize a negative transition on the pin, the maximum rate at which counting will take place is 1/24 of the master clock frequency. In either the “Timer” or “Counter” mode, the count register will be updated in S3P1. Therefore, in the “Timer” mode, the recognized negative transition on pin T0 and T1 can cause the count register value to be updated only in the machine cycle following the one in which the negative edge was detected.

7

6

5

4

3

2

1

0

GATE

C/T

M1

M0

GATE

C/T

M1

M0

 

 

Timer 1

Timer 0

GATE

This bit controls the gating operations. When this bit is set, the Timer/Counter “x”

 

is enabled only while “INTx” pin is high and “TRx” bit is set high. If this bit is

 

cleared, then Timer/Counter “x” is enabled only if “TRx” is set.

C/T

This bit selects the Timer or Counter mode of operation. If this bit is set then the

 

Counter mode is selected, else the Timer mode is selected.

M1, M0

M1 and M0 selects the operating mode for the Timer/Counter

 

M1

M0

Operating Mode

 

 

 

 

0

0

“THx” acts as a 8 bit Timer/Counter, with “TLx” as the 5 bit prescaler.

 

0

1

“THx” and “TLx” are cascaded to form a single 16 bit Timer/Counter.

 

1

0

This is the Auto Reload mode.

 

1

1

Timer 0: TL0 is an 8 bit Timer/Counter controlled by the Timer 0

 

 

 

control bits. TH0 is a 8 bit timer controlled by the Timer 1 control bits.

 

 

 

Timer 1: Timer/Counter is stopped.

TMOD: Timer/Counter Mode Control Register

Kawasaki LSI USA, Inc.

Page 12 of 120

Ver. 0.9 KS152JB2

Image 12
Contents Introduction Technical Specifications Pin Description PIN DescriptionName Description Port Pin Name Alternate FunctionXTAL1 XTAL2RST ALE PsenEben EpsenSpecial function Registers SFR map for the cpuReset Timing Reset Values of the SFRs Configurations SconSbuf Indeterminate Tmod PconPort 0 I/O Pad Port 2 I/O Pad Port bit I/O PadsPorts 4,5 Program Psen EpsenComments Fetch viaTIMER/COUNTERS Tmod Timer/Counter Mode Control RegisterTcon Timer/Counter Control Register ModeTimer/Counter in Mode Timer/Counter 0 in Mode IE Interrupt Enable RegisterInterrupts Priority Level Structure Egste EDMA1 Egstv EDMA0 Egsre Egsrv Pgste PDMA1 Pgstv PDMA0 Pgsre PgsrvPX0 EX0Pgsrv Egsrv 2BHPDMA1 EDMA1PT1 ET1 1BHKawasaki LSI USA, Inc Ver .9 KS152JB2 Power Down and Idle Status of the External Pins during Idle and Power DownALE Psen Pcon Power Control Register Smod IDLLocal Serial Channel Local Serial Port Mode ControllerSerial Port Mode Mode Load Sbuf Baud Rates Timer 1 generated commonly used Baud rates SmodMHZ SINGLE-STEP Operation JNBReti Kawasaki LSI USA Inc Global Serial Channel Introduction11/IDLE CRC None DC JAM CRCCsma Sdlc 11/IDLEExternal clock Internal clock Control cpu Control dma Raw Receive Raw Transmit CSMA/CD Overview CSMA/CD Frame FormatPreamble BOF Address Info CRC EOF Kawasaki LSI USA, Inc Ver .9 KS152JB2 23 24 Interframe Space CSMA/CD Data Encoding Manchester Encoding BIT TimeCollision Detection Jitter ToleranceNarrow Pulses Missing 0-to-1 TransitionUnexpected 1-to-0 Transition Resolution of Collisions GSC InactiveResponse to a Detected Collision What the GSC was doing TfifoBackoff DCRAlgorithm Random Backoff Prbs Tcdcnt Load Bkoff Slot Clock MyslotBKOFF= Myslot Deterministic Backoff Hardware Based Acknowledge Kawasaki LSI USA, Inc Ver .9 KS152JB2 Sdlc Frame Format BOF Address Control Info CRC EOFKawasaki LSI USA, Inc Ver .9 KS152JB2 Data Encoding Nrzi BIT TimeBIT STUFFING/STRIPPING Sending Abort Character Line IdleAcknowledgement PRIMARY/SECONDARY Stations Point-to-point NetworkMulti-Drop Network Ring NetworkUsing a Preamble in Sdlc HDLC/SDLC ComparisonSdlc Hdlc User Defined ProtocolsLine Discipline Planning for Network Changes and ExpansionsDMA Servicing of GSC Channels Kawasaki LSI USA, Inc Ver .9 KS152JB2 Baud Rate Initialization Test Modes External Driver InterfaceJitter Receive Local Value Manchester Encoding BIT Time Receive Sampling Rate ReceivedBIT Time Received Transmit WaveformsReceiver Clock Recovery CSMA/CD Clock RecoveryDetermining Receiver Errors External ClockingRcbat Crce AddressingDetermining Line Discipline 2 CPU/DMA Control of the GSCCollisions and Backoff What the GSC was doing Response GSC Register Descriptions Successful Ending of Transmissions and ReceptionsGMOD84H Xtclk PL1 PL0 PL1 PL0 Length BitsKawasaki LSI USA, Inc Ver .9 KS152JB2 DCJ DCR SA5 SA4 SA3 SA2 SA1 SA0 ARB REQ Garen Xrclk Gfien IDLRcabt Crce RDN Rfne Gren Haben Kawasaki LSI USA, Inc Ver .9 KS152JB2 LNI Noack Tcdt TDN Tfnf TEN DMA Kawasaki LSI USA, Inc Ver .9 KS152JB2 DMA Operation DMA with the 80C152DMA Registers Alternate Cycle Mode Burst ModeDAS IDA SAS ISASerial Port Demand Mode External Demand ModeTiming Diagrams 12 OSC.PERIODS ALE Psen P1 Inst FloatPCH P2 SFR DMA Cycle Resume Program Execution DMA Transfer from Internal Memory to Internal Memory12 OSC. Periods ALE Psen Inst DMA Data OUT PCL Inst PCH DMA Cycle 12 OSC. Periods Resume Program Execution ALE PsenDMA Cycle Resume Program Execution Request Mode Arbiter ModeHold/Hold Acknowledge Using the HOLD/HLDA Acknowledge ARB REQALE ARB If Hlda = ALE AEQ ALE REQ Internal Logic of the ArbiterDmxrq Internal Logic of the Requester DMA Arbitration Kawasaki LSI USA, Inc.oup, Inc Ver .9 KS152JB2 Kawasaki LSI USA, Inc Ver .9 KS152JB2 Kawasaki LSI USA, Inc Ver .9 KS152JB2 DMA Arbitration with Hold/Hold Ack Summary of DMA Control Bits DAS IDA SAS ISA DoneInterrupt Structure IE0 TI+RI ET1 EX1 ET0 EX0PT1 PX1 PT0 PX0 IPN1GSC Transmitter Error Conditions Transmit Error Flags Logic for Clearing TEN, Setting TDNGSC Receiver Error Conditions Glossary Kawasaki LSI USA, Inc Ver .9 KS152JB2 DCON0/1 092H,093H Xtclk PL1 PL0 Kawasaki LSI USA, Inc 102 Ver .9 KS152JB2 Kawasaki LSI USA, Inc 103 Ver .9 KS152JB2 PT1 PX1 PT0 EX0 Myslot 0F5H DCJ DCR SA5 SA4 SA3 SA2 SA1 SA0 Smod ARB REQ Garen Xrclk Gfien IDL OVR Rcabt Crce RDN Rfne Gren Haben Kawasaki LSI USA, Inc 108 Ver .9 KS152JB2 SM0 SM1 SM2 REN TB8 RB8 TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0Gate Kawasaki LSI USA, Inc 111 Ver .9 KS152JB2 Port Stack PointerData Pointer LOW DPL.7 DPL.6 DPL5 DPL.4 DPL.3 DPL.2 DPL.1 DPL.0Timer Control Data Pointer HighDPH.7 DPH.6 DPH.5 DPH.4 DPH.3 DPH.2 DPH.1 DPH.0 DPHTimer Mode Control Gate TimerTimer 0 LSB Timer 1 LSBTimer 0 MSB Timer 1 MSBSerial Port Control SM0Serial Data Buffer SBUF.7Program Status Word RS1 RS0Accumulator ACC.7 ACC.6 ACC.5 ACC.4 ACC.3 ACC.2 ACC.1 ACC.0Kawasaki LSI USA, Inc 119 Ver .9 KS152JB2 Kawasaki LSI USA, Inc 120 Ver .9 KS152JB2