Kawasaki 80C152, KS152JB External Clocking, Determining Receiver Errors, Rcbat Crce, Addressing

Page 64

KS152JB Universal Communications Controller Technical Specifications

3.5.11 External Clocking

To select external clocking, the user is given three choices. External clocking can be used with the transmitter, with the receiver, or with both. To select external clocking for the transmitter, XTCLK (GMOD.7) has to be set to a 1. To select external clocking for the receiver, XRCLK (PCON.3) has to be set to a 1. Set ting both bits to 1 forces external clocking for the receiver and transmitter. The minimum frequency the GSC can be externally clocked at is 0 Hz (D.C.).

The external transmit clock is applied to pin 4 (TXC), P1.3. The external receive clock is applied to pin 5 (RXC), P1.4. To enable the external clock function on the port pin, that pin has to be set to a 1 in the appropriate SFR, P1.

Whenever the external clock option is used, the format of the transmitted and received data is restricted to NRZ encoding and the protocol is restricted to SDLC. With external clock, the bit stuffing/stripping is still active with SDLC protocol.

3.5.12 Determining Receiver Errors

It is possible that several receiver error bits will be set in response to a single cause. The multiple errors that can occur are:

AE and CRCE may both be set when an alignment error occurs due to a bad CRC caused by the misaligned frame.

RCABT, AE, and CRCE may be set when an abort occurs.

OVR, AE, and CRCE may be set when a overrun occurs.

In order to determine the correct cause o the error a specific order should be followed when exam- ining the error bits. This order is:

1)OVR

2)RCBAT

3)AE

4)CRCE

3.5.13Addressing

There are four 8-bit address registers (ADR0, ADR1, ADR2, ADR3) and two 8-bit address mask registers (AMSK0, AMSK1) in the C152. These function with the GSC receiver only. The trans- mitted address is treated like any other data. The address is transmitted under software control by placing the address byte(s) at the proper location (usually first) in the sequence of bytes to be out- put in the outgoing packet.

The C152 can have up to four different 8-bit addresses or two different 16-bit addresses assigned

Kawasaki LSI USA, Inc.

Page 64 of 120

Ver. 0.9 KS152JB2

Image 64
Contents Introduction Technical Specifications Pin Description PIN DescriptionName Description Port Pin Name Alternate FunctionXTAL2 XTAL1RST ALE PsenEben EpsenSpecial function Registers SFR map for the cpuReset Timing Reset Values of the SFRs Configurations SconSbuf Indeterminate Tmod PconPort 0 I/O Pad Port 2 I/O Pad Port bit I/O PadsPorts 4,5 Program Psen EpsenComments Fetch viaTIMER/COUNTERS Tmod Timer/Counter Mode Control RegisterTcon Timer/Counter Control Register ModeTimer/Counter in Mode IE Interrupt Enable Register Timer/Counter 0 in ModeInterrupts Priority Level Structure Egste EDMA1 Egstv EDMA0 Egsre Egsrv Pgste PDMA1 Pgstv PDMA0 Pgsre PgsrvPX0 EX0Pgsrv Egsrv 2BHPDMA1 EDMA1PT1 ET1 1BHKawasaki LSI USA, Inc Ver .9 KS152JB2 Status of the External Pins during Idle and Power Down Power Down and IdleALE Psen Pcon Power Control Register Smod IDLLocal Serial Channel Local Serial Port Mode ControllerSerial Port Mode Mode Load Sbuf Baud Rates Smod Timer 1 generated commonly used Baud ratesMHZ JNB SINGLE-STEP OperationReti Kawasaki LSI USA Inc Global Serial Channel Introduction11/IDLE CRC None DC JAM CRCCsma Sdlc 11/IDLEExternal clock Internal clock Control cpu Control dma Raw Receive Raw Transmit CSMA/CD Frame Format CSMA/CD OverviewPreamble BOF Address Info CRC EOF Kawasaki LSI USA, Inc Ver .9 KS152JB2 23 24 Interframe Space CSMA/CD Data Encoding Manchester Encoding BIT TimeCollision Detection Jitter ToleranceMissing 0-to-1 Transition Narrow PulsesUnexpected 1-to-0 Transition Resolution of Collisions GSC InactiveResponse to a Detected Collision What the GSC was doing TfifoDCR BackoffAlgorithm Prbs Tcdcnt Load Bkoff Slot Clock Myslot Random BackoffBKOFF= Myslot Deterministic Backoff Hardware Based Acknowledge Kawasaki LSI USA, Inc Ver .9 KS152JB2 Sdlc Frame Format BOF Address Control Info CRC EOFKawasaki LSI USA, Inc Ver .9 KS152JB2 Nrzi BIT Time Data EncodingBIT STUFFING/STRIPPING Line Idle Sending Abort CharacterAcknowledgement PRIMARY/SECONDARY Stations Point-to-point NetworkMulti-Drop Network Ring NetworkUsing a Preamble in Sdlc HDLC/SDLC ComparisonSdlc Hdlc User Defined ProtocolsLine Discipline Planning for Network Changes and ExpansionsDMA Servicing of GSC Channels Kawasaki LSI USA, Inc Ver .9 KS152JB2 Baud Rate Initialization Test Modes External Driver InterfaceJitter Receive Local Value Manchester Encoding BIT Time Receive Sampling Rate ReceivedBIT Time Received Transmit WaveformsReceiver Clock Recovery CSMA/CD Clock RecoveryDetermining Receiver Errors External ClockingRcbat Crce AddressingDetermining Line Discipline 2 CPU/DMA Control of the GSCCollisions and Backoff What the GSC was doing Response GSC Register Descriptions Successful Ending of Transmissions and ReceptionsGMOD84H Xtclk PL1 PL0 PL1 PL0 Length BitsKawasaki LSI USA, Inc Ver .9 KS152JB2 DCJ DCR SA5 SA4 SA3 SA2 SA1 SA0 ARB REQ Garen Xrclk Gfien IDLRcabt Crce RDN Rfne Gren Haben Kawasaki LSI USA, Inc Ver .9 KS152JB2 LNI Noack Tcdt TDN Tfnf TEN DMA Kawasaki LSI USA, Inc Ver .9 KS152JB2 DMA Operation DMA with the 80C152DMA Registers Alternate Cycle Mode Burst ModeDAS IDA SAS ISASerial Port Demand Mode External Demand ModeTiming Diagrams 12 OSC.PERIODS ALE Psen P1 Inst FloatPCH P2 SFR DMA Cycle Resume Program Execution DMA Transfer from Internal Memory to Internal MemoryDMA Cycle 12 OSC. Periods Resume Program Execution ALE Psen 12 OSC. Periods ALE Psen Inst DMA Data OUT PCL Inst PCHDMA Cycle Resume Program Execution Arbiter Mode Request ModeHold/Hold Acknowledge Using the HOLD/HLDA Acknowledge ARB REQInternal Logic of the Arbiter ALE ARB If Hlda = ALE AEQ ALE REQDmxrq Internal Logic of the Requester DMA Arbitration Kawasaki LSI USA, Inc.oup, Inc Ver .9 KS152JB2 Kawasaki LSI USA, Inc Ver .9 KS152JB2 Kawasaki LSI USA, Inc Ver .9 KS152JB2 DMA Arbitration with Hold/Hold Ack Summary of DMA Control Bits DAS IDA SAS ISA DoneInterrupt Structure IE0 TI+RI ET1 EX1 ET0 EX0PT1 PX1 PT0 PX0 IPN1GSC Transmitter Error Conditions Transmit Error Flags Logic for Clearing TEN, Setting TDNGSC Receiver Error Conditions Glossary Kawasaki LSI USA, Inc Ver .9 KS152JB2 DCON0/1 092H,093H Xtclk PL1 PL0 Kawasaki LSI USA, Inc 102 Ver .9 KS152JB2 Kawasaki LSI USA, Inc 103 Ver .9 KS152JB2 PT1 PX1 PT0 EX0 Myslot 0F5H DCJ DCR SA5 SA4 SA3 SA2 SA1 SA0 Smod ARB REQ Garen Xrclk Gfien IDL OVR Rcabt Crce RDN Rfne Gren Haben Kawasaki LSI USA, Inc 108 Ver .9 KS152JB2 SM0 SM1 SM2 REN TB8 RB8 TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0Gate Kawasaki LSI USA, Inc 111 Ver .9 KS152JB2 Port Stack PointerData Pointer LOW DPL.7 DPL.6 DPL5 DPL.4 DPL.3 DPL.2 DPL.1 DPL.0Timer Control Data Pointer HighDPH.7 DPH.6 DPH.5 DPH.4 DPH.3 DPH.2 DPH.1 DPH.0 DPHTimer Mode Control Gate TimerTimer 0 LSB Timer 1 LSBTimer 0 MSB Timer 1 MSBSerial Port Control SM0Serial Data Buffer SBUF.7Program Status Word RS1 RS0Accumulator ACC.7 ACC.6 ACC.5 ACC.4 ACC.3 ACC.2 ACC.1 ACC.0Kawasaki LSI USA, Inc 119 Ver .9 KS152JB2 Kawasaki LSI USA, Inc 120 Ver .9 KS152JB2