Spectrum Brands MI.61XX manual Software Driver Installation, Interrupt Sharing

Page 17

Software Driver Installation

Interrupt Sharing

 

 

Software Driver Installation

Before using the board a driver must be installed that matches the operating system. The installation is done in different ways depending on the used operating system. The driver that is on CD supports all boards of the MI, MC and MX series. That means that you can use the same driver for all boards of theses families.

Interrupt Sharing

This board uses a PCI interrupt for DMA data transfer and for controlling the FIFO mode. The used interrupt line is allocated by the PC BIOS at system start and is normally depending on the selected slot. Because there is only a limited number of interrupt lines available on the PCI bus it can happen that two or more boards must use the same interrupt line. This so called interrupt sharing must be supported by all drivers of the participating equipment.

Most available drivers and also the Spectrum driver for your board can manage interrupt sharing. But there are also some drivers on the market that can only use one interrupt exclusively. If this equipment shares an interrupt with the Spectrum board, the system will hang up if the second driver is loaded (the time is depending on the operating system).

If this happens it is necessary to reconfigure the system in that way that the critical equipment has an exclusive access to an interrupt.

On most systems the BIOS shows a list of all installed PCI boards with their allocated interrupt lines directly after system start. You have to check whether an interrupt line is shared between two boards. Some BIOS allow the manual allocation of interrupt lines. Have a look in your mainboard manual for further information on this topic.

Because normally the interrupt line is fixed for one PCI slot it is simply necessary to use another slot for the critical board to force a new interrupt allocation. You have to search a configuration where all critical boards have only exclusive access to one interrupt.

Depending on the system, using the Spectrum board with a shared interrupt may degrade performance a little. Each interrupt needs to be checked by two drivers. For this reason when using time critical FIFO mode even the Spectrum board should have an exclusively access to one interrupt line.

(c) Spectrum GmbH

17

Image 17
Contents English version October 5 MI.61xxPage Software Driver Installation Hardware InstallationIntroduction SoftwareProgramming the Board Fifo ModeAnalog Outputs Standard generation modesOption Extra I/O Option Gated ReplaySynchronization Option AppendixPreface IntroductionGeneral Information PrefaceIntroduction Different models of the MI.61xx seriesMI.6110 MI.6111 Extra I/O Option -XIO Additional optionsExtra I/O Option -XMF Introduction Additional options StarhubSpectrum type plate Hardware information Block diagram Technical DataOrder information Dynamic ParametersHardware informationIntroduction FilterSystem Requirements Hardware InstallationInstalling the board in the system Installing a board with extra I/O Option -XMF Installing a board with digital inputs/outputsMounting the wired boards Installing multiple boards synchronized by starhubHooking up the boards Only use the included flat ribbon cablesInstalling multiple synchronized boards Interrupt Sharing Software Driver InstallationSoftware Driver Installation Version control InstallationWindows Driver Update Windows Software Driver Installation Windows Windows XP Windows XP Adding boards to the Windows NT driver Windows NTOverview LinuxNow it is possible to access the board using this device Installing the deviceDriver info Automatic load of the driverSoftware Overview SoftwareFirst Test with SBench SoftwareHeader files ++ Driver InterfaceMicrosoft Visual C++ Linux Gnu CNational Instruments LabWindows/CVI Other Windows C/C++ compilersDriver functions Include DriversFunction SpcSetParam Function SpcSetParamFunction SpcSetData Windows Function SpcGetDataSpectrum GmbH Type definition Delphi Pascal Programming InterfaceInclude Driver ExamplesDelphi Pascal Programming Interface VBA for Excel Examples Visual Basic Programming InterfaceVisual Basic Examples Visual Basic Programming Interface Programming the Board Error handlingOverview Register tablesInitialization Example for error checkingStarting the automatic initialization routine PCI RegisterHardware version Installed memoryDate of production Serial numberUsed interrupt line Installed features and optionsUsed type of driver Driver versionExample program for the board initialization Powerdown and resetSpcpcimemsize SpcpciserialnoChannel Selection Analog OutputsImportant note on channels selection Disabling the outputsOutput Amplifiers Setting up the outputsOutput offset Register Value Direction Description Amplitude rangeOutput Filters Filter SpecificationsMaximum Output Range Programming Standard generation modesGeneral description Maximum memsize Standard generation modes ProgrammingMaximum posttrigger in MSamples Minimum and stepsize of memsize and posttrigger in samplesStarting with interrupt driven mode Starting without interrupt classic modeCommand register ProgrammingStandard generation modesWriting data with SpcSetData Data organizationValue ’start’ as a 32 bit integer value Value ’len’ as a 32 bit integer valueSample format Standard modeBit Standard Mode General Information Fifo ModeBackground Fifo Write Speed LimitationsSoftware Buffers Programming Fifo ModeTheoretical maximum sample rate PCI Bus Throughput 60040 Read out the number of available Fifo buffersBuffer processing Fifo Mode ProgrammingAnalog acquisition or generation boards Digital I/O 701x or 702x or pattern generator boards== Maxbuf Example Fifo generation modeSpcfifostart SpcfifowaitProgramming Standard internal sample rate Clock generationInternally generated sample rate External clocking Using plain quartz with no PLLExternal reference clock Maximum external samplerate in MS/s Direct external clockMinimum external sample rate CHANNEL0 CHANNEL1 CHANNEL2 CHANNEL3 External clock with dividerExample Trigger modes and appendant registers Example for setting up the software triggerSoftware trigger External TTL triggerEdge triggers Example on how to set up the board for positive TTL triggerTrigger modes and appendant registers Positive TTL triggerPositive and negative TTL trigger Option Multiple Replay Standard ModeOutput modes Trigger modesTrigger modes Option Multiple Replay Resulting start delaysOption Gated Replay General information and trigger delayOption Gated Replay Value Direction DescriptionAllowed trigger modes Example programExternal TTL edge trigger Spctriggermode TmttlposDigital I/Os Option Extra I/OChannel direction Transfer DataAnalog Outputs Option Extra I/O Analog OutputsProgramming example Different synchronization options Synchronization OptionSynchronization with option cascading Synchronization with option starhubSet up the board parameters Setup order for the different synchronization optionsExample of board setup for three boards Write Data to on-board memory output boards onlyExample of board #2 set as trigger master Define the boards for trigger master3a Define synchronization or trigger Define the remaining boards as trigger slavesExample board number 0 is clock master Define the board for clock masterDefine the remaining boards as clock slaves Arm the boards for synchronizationWait for the end of the measurement Start all of the trigger master boardsRead data from the on-board memory acquisition boards only Example for data reading2a Write first data for output boards Allocate the Fifo software buffersSpcsyncmasterfifo SpcsyncslavefifoAs trigger slaves General information Additions for synchronizing different boardsCalculating the clock dividers 20xx 30xx 31xx 40xx 45xx 60xx 61xx 70xx 72xxBoard type 3122 3120 Setting up the clock divider40 MS/s Board type 3025 3131Delay in standard non Fifo modes Resulting delays using different boards or speedsDelay in Fifo mode Additions for equal boards with different sample ratesError name Value hex Value dec Error description Error CodesAppendix AppendixPin assignment of the multipin cable Pin assignment of the multipin connectorExtra I/O with external connectorOption -XMF Extra I/O with internal connector Option -XIO Pin assignment of the internal multipin connectorD14 D12 D10 D15 D13 D11