Spectrum Brands MI.61XX Fifo Mode, General Information, Background Fifo Write, Speed Limitations

Page 49

FIFO Mode

Overview

 

 

FIFO Mode

Overview

General Information

The FIFO mode allows to record data continuously and trans- fer it online to the PC (acquisition boards) or allows to write data continuously from the PC to the board (generation boards). Therefore the on-board memory of the board is used as a continuous buffer. On the PC the data can be used for any calculation or can be written to hard disk while recording is running (acquisition boards) or the data can be read from hard disk and calculated online before writing it to the board.

FIFO mode uses interrupts and is supported by the drivers on 32 bit operating systems like Window 9x/ME, Windows NT/2000/XP or Linux. Start of FIFO mode waits for a trigger event. If you wish to start FIFO mode immediately, you may use the software trigger.FIFO mode can be used together with the options Multiple Recording/Replay and Gated Sampling/Replay. Details on this can be found in the appropriate chapters about the options.

Background FIFO Write

On the hardware side the memory is split in two buffers of the same length. These buffers can be up to half of the on-board memory in size. The driver holds up to 256 software buffers of the same length as the hardware buffers. Whenever a hardware buffer is empty and all data replayed the hardware generates an interrupt and the driver transfers the next software buffer to the empty hardware buffer. The driver is doing this job automatically in the background. After driver has finsihed transferring the data the application software gets a signal and can generate data or load the next buffer from hard disk.

After processing the data the application software tells the driver that the data in the software buffer is valid and can again be used for data generation. This two stages buffering has big advantages when running FIFO mode at the speed limit. The software buffers expand the ge- neration time that can be buffered and protects the whole system against buffer underruns.

Speed Limitations

The FIFO mode is running continuously all the time. Therefore the data must be read out from the board (data acquisition) or written to the board (data generation) at least with the same speed that it is recorded/replayed. If data is read out from the board or written to the board more slowly, the hardware buffers will overrun at a certain point and FIFO mode is stopped.

One bottleneck with the FIFO mode is the PCI bus. The standard PCI bus is theoretically capable of transferring data with 33 MHz and 32 Bit. As a result a maximum burst transfer rate of 132 MByte per second can be achieved. As several devices can share the PCI bus this maximum transfer rate is only available to a short transfer burst until a new bus arbitration is necessray. In real life the continuous transfer rate is limited to approximately 100-110 MBytes per second. The maximum FIFO speed one can achieve heavily depends on the PC system and the operating system and varies from system to system.

The maximum sample rate one can run in continuous FIFO mode depends on the number of activated channels:

(c) Spectrum GmbH

49

Image 49
Contents English version October 5 MI.61xxPage Software Driver Installation Hardware InstallationIntroduction SoftwareProgramming the Board Fifo ModeAnalog Outputs Standard generation modesOption Extra I/O Option Gated ReplaySynchronization Option AppendixPreface IntroductionGeneral Information PrefaceMI.6110 MI.6111 Different models of the MI.61xx seriesIntroduction Extra I/O Option -XMF Additional optionsExtra I/O Option -XIO Introduction Additional options StarhubSpectrum type plate Hardware information Block diagram Technical DataOrder information Dynamic ParametersHardware informationIntroduction FilterInstalling the board in the system Hardware InstallationSystem Requirements Installing a board with extra I/O Option -XMF Installing a board with digital inputs/outputsMounting the wired boards Installing multiple boards synchronized by starhubHooking up the boards Only use the included flat ribbon cablesInstalling multiple synchronized boards Software Driver Installation Software Driver InstallationInterrupt Sharing Windows InstallationVersion control Driver Update Windows Software Driver Installation Windows Windows XP Windows XP Adding boards to the Windows NT driver Windows NTOverview LinuxNow it is possible to access the board using this device Installing the deviceDriver info Automatic load of the driverSoftware Overview SoftwareFirst Test with SBench SoftwareHeader files ++ Driver InterfaceMicrosoft Visual C++ Linux Gnu CNational Instruments LabWindows/CVI Other Windows C/C++ compilersDriver functions Include DriversFunction SpcSetParam Function SpcSetParamFunction SpcSetData Windows Function SpcGetDataSpectrum GmbH Type definition Delphi Pascal Programming InterfaceInclude Driver ExamplesDelphi Pascal Programming Interface Visual Basic Examples Visual Basic Programming InterfaceVBA for Excel Examples Visual Basic Programming Interface Programming the Board Error handlingOverview Register tablesInitialization Example for error checkingStarting the automatic initialization routine PCI RegisterHardware version Installed memoryDate of production Serial numberUsed interrupt line Installed features and optionsUsed type of driver Driver versionExample program for the board initialization Powerdown and resetSpcpcimemsize SpcpciserialnoChannel Selection Analog OutputsImportant note on channels selection Disabling the outputsOutput Amplifiers Setting up the outputsOutput offset Register Value Direction Description Amplitude rangeMaximum Output Range Filter SpecificationsOutput Filters General description Standard generation modesProgramming Maximum memsize Standard generation modes ProgrammingMaximum posttrigger in MSamples Minimum and stepsize of memsize and posttrigger in samplesStarting with interrupt driven mode Starting without interrupt classic modeCommand register ProgrammingStandard generation modesWriting data with SpcSetData Data organizationValue ’start’ as a 32 bit integer value Value ’len’ as a 32 bit integer valueBit Standard Mode Standard modeSample format General Information Fifo ModeBackground Fifo Write Speed LimitationsSoftware Buffers Programming Fifo ModeTheoretical maximum sample rate PCI Bus Throughput 60040 Read out the number of available Fifo buffersBuffer processing Fifo Mode ProgrammingAnalog acquisition or generation boards Digital I/O 701x or 702x or pattern generator boards== Maxbuf Example Fifo generation modeSpcfifostart SpcfifowaitProgramming Internally generated sample rate Clock generationStandard internal sample rate External reference clock Using plain quartz with no PLLExternal clocking Minimum external sample rate Direct external clockMaximum external samplerate in MS/s Example External clock with dividerCHANNEL0 CHANNEL1 CHANNEL2 CHANNEL3 Trigger modes and appendant registers Example for setting up the software triggerSoftware trigger External TTL triggerEdge triggers Example on how to set up the board for positive TTL triggerTrigger modes and appendant registers Positive TTL triggerPositive and negative TTL trigger Option Multiple Replay Standard ModeOutput modes Trigger modesTrigger modes Option Multiple Replay Resulting start delaysOption Gated Replay General information and trigger delayOption Gated Replay Value Direction DescriptionAllowed trigger modes Example programExternal TTL edge trigger Spctriggermode TmttlposDigital I/Os Option Extra I/OChannel direction Transfer DataProgramming example Analog OutputsAnalog Outputs Option Extra I/O Different synchronization options Synchronization OptionSynchronization with option cascading Synchronization with option starhubSet up the board parameters Setup order for the different synchronization optionsExample of board setup for three boards Write Data to on-board memory output boards onlyExample of board #2 set as trigger master Define the boards for trigger master3a Define synchronization or trigger Define the remaining boards as trigger slavesExample board number 0 is clock master Define the board for clock masterDefine the remaining boards as clock slaves Arm the boards for synchronizationWait for the end of the measurement Start all of the trigger master boardsRead data from the on-board memory acquisition boards only Example for data reading2a Write first data for output boards Allocate the Fifo software buffersSpcsyncmasterfifo SpcsyncslavefifoAs trigger slaves General information Additions for synchronizing different boardsCalculating the clock dividers 20xx 30xx 31xx 40xx 45xx 60xx 61xx 70xx 72xxBoard type 3122 3120 Setting up the clock divider40 MS/s Board type 3025 3131Delay in standard non Fifo modes Resulting delays using different boards or speedsDelay in Fifo mode Additions for equal boards with different sample ratesError name Value hex Value dec Error description Error CodesAppendix AppendixExtra I/O with external connectorOption -XMF Pin assignment of the multipin connectorPin assignment of the multipin cable Extra I/O with internal connector Option -XIO Pin assignment of the internal multipin connectorD14 D12 D10 D15 D13 D11