Spectrum Brands MI.61XX manual Example program, Allowed trigger modes, External TTL edge trigger

Page 64

Example program

Option Gated Replay

 

 

Due to the structure of the on-board memory there is another delay at the end of the gate interval.

Internally a gate-end signal can only be recognized at an eight samples alignment.

So depending on what time your external gate signal will leave the programmed gate condition it might hap- pen that at maximum seven more samples are replayed, before the board pauses (see figure).

The figure on the right is showing this end delay exem- plarily for three possible gate signals. As all samples are counted from zero. The eight samples alignment in the upper two cases is reached at the end of sample 39, which is therefore the 40th sample.

Resulting start delays

Sample rate

Output Mode

Activated channels

external TTL trigger

ext. TTL trigger with activated

 

 

 

 

 

 

 

synchronization

 

 

0

1

2

3

 

 

< 5 MHz

Standard or FIFO

x

 

 

 

8 samples

10 samples

> 5 MHz

Standard or FIFO

x

 

 

 

24 samples

26 samples

< 2.5 MHz

Standard or FIFO

x

x

 

 

5 samples

6 samples

 

 

 

 

 

 

 

 

> 2.5 MHz

Standard or FIFO

x

x

 

 

14 samples

15 samples

< 5 MHz

Standard

x

 

x

 

8 samples

10 samples

> 5 MHz

Standard

x

 

x

 

24 samples

26 samples

 

 

 

 

 

 

 

 

< 2.5 MHz

FIFO

x

 

x

 

5 samples

6 samples

> 2.5 MHz

FIFO

x

 

x

 

14 samples

15 samples

< 2.5 MHz

Standard

x

x

x

x

5 samples

6 samples

 

 

 

 

 

 

 

 

> 2.5 MHz

Standard

x

x

x

x

14 samples

15 samples

< 1.25 MHz

FIFO

x

x

x

x

3.5 samples (falling clock edge)

3.5 samples (falling clock edge)

> 1.25 MHz

FIFO

x

x

x

x

8.5 samples (falling clock edge)

8.5 samples (falling clock edge)

Allowed trigger modes

As mentioned above not all of the possible trigger modes can be used as a gate condition. The following table is showing the allowed trig- ger modes that can be used and explains the event that has to be detected for gate-start end for gate-end.

External TTL edge trigger

Mode

Gate start will be detected on

Gate end will be detected on

TM_TTLPOS

positive edge on external trigger

negative edge on external trigger

 

 

 

TM_TTL_NEG

negative edge on external trigger

positive edge on external trigger

Example program

The following example shows how to set up the board for Gated Replay in standard mode. The setup would be similar in FIFO mode, but the memsize register would not be used.

SpcSetParam (hDrv, SPC_GATE,

1);

// Enables Gated

Repaly

generation

to 4096 samples

SpcSetParam

(hDrv,

SPC_MEMSIZE,

4096);

// Set the

total

memsize of

SpcSetParam

(hDrv,

SPC_TRIGGERMODE,

TM_TTLPOS);

//

Sets the gate condition to external

TTL mode, so that

 

 

 

 

//

data is

replayed, if the

signal is at HIGH level

64

MI.61xx Manual

Image 64
Contents MI.61xx English version October 5Page Hardware Installation Software Driver InstallationIntroduction SoftwareFifo Mode Programming the BoardAnalog Outputs Standard generation modesOption Gated Replay Option Extra I/OSynchronization Option AppendixIntroduction PrefaceGeneral Information PrefaceMI.6110 MI.6111 Different models of the MI.61xx seriesIntroduction Extra I/O Option -XMF Additional optionsExtra I/O Option -XIO Starhub Introduction Additional optionsSpectrum type plate Block diagram Technical Data Hardware informationDynamic Parameters Order informationHardware informationIntroduction FilterInstalling the board in the system Hardware InstallationSystem Requirements Installing a board with digital inputs/outputs Installing a board with extra I/O Option -XMFInstalling multiple boards synchronized by starhub Mounting the wired boardsHooking up the boards Only use the included flat ribbon cablesInstalling multiple synchronized boards Software Driver Installation Software Driver InstallationInterrupt Sharing Windows InstallationVersion control Driver Update Windows Software Driver Installation Windows Windows XP Windows XP Windows NT Adding boards to the Windows NT driverLinux OverviewInstalling the device Now it is possible to access the board using this deviceDriver info Automatic load of the driverSoftware Software OverviewFirst Test with SBench Software++ Driver Interface Header filesMicrosoft Visual C++ Linux Gnu COther Windows C/C++ compilers National Instruments LabWindows/CVIDriver functions Include DriversFunction SpcSetParam Function SpcSetParamFunction SpcSetData Windows Function SpcGetDataSpectrum GmbH Delphi Pascal Programming Interface Type definitionInclude Driver ExamplesDelphi Pascal Programming Interface Visual Basic Examples Visual Basic Programming InterfaceVBA for Excel Examples Visual Basic Programming Interface Error handling Programming the BoardOverview Register tablesExample for error checking InitializationStarting the automatic initialization routine PCI RegisterInstalled memory Hardware versionDate of production Serial numberInstalled features and options Used interrupt lineUsed type of driver Driver versionPowerdown and reset Example program for the board initializationSpcpcimemsize SpcpciserialnoAnalog Outputs Channel SelectionImportant note on channels selection Disabling the outputsSetting up the outputs Output AmplifiersOutput offset Register Value Direction Description Amplitude rangeMaximum Output Range Filter SpecificationsOutput Filters General description Standard generation modesProgramming Standard generation modes Programming Maximum memsizeMaximum posttrigger in MSamples Minimum and stepsize of memsize and posttrigger in samplesStarting without interrupt classic mode Starting with interrupt driven modeCommand register ProgrammingStandard generation modesData organization Writing data with SpcSetDataValue ’start’ as a 32 bit integer value Value ’len’ as a 32 bit integer valueBit Standard Mode Standard modeSample format Fifo Mode General InformationBackground Fifo Write Speed LimitationsProgramming Fifo Mode Software BuffersTheoretical maximum sample rate PCI Bus Throughput 60040 Read out the number of available Fifo buffersFifo Mode Programming Buffer processingAnalog acquisition or generation boards Digital I/O 701x or 702x or pattern generator boardsExample Fifo generation mode == MaxbufSpcfifostart SpcfifowaitProgramming Internally generated sample rate Clock generationStandard internal sample rate External reference clock Using plain quartz with no PLLExternal clocking Minimum external sample rate Direct external clockMaximum external samplerate in MS/s Example External clock with dividerCHANNEL0 CHANNEL1 CHANNEL2 CHANNEL3 Example for setting up the software trigger Trigger modes and appendant registersSoftware trigger External TTL triggerExample on how to set up the board for positive TTL trigger Edge triggersTrigger modes and appendant registers Positive TTL triggerPositive and negative TTL trigger Standard Mode Option Multiple ReplayOutput modes Trigger modesResulting start delays Trigger modes Option Multiple ReplayGeneral information and trigger delay Option Gated ReplayOption Gated Replay Value Direction DescriptionExample program Allowed trigger modesExternal TTL edge trigger Spctriggermode TmttlposOption Extra I/O Digital I/OsChannel direction Transfer DataProgramming example Analog OutputsAnalog Outputs Option Extra I/O Synchronization Option Different synchronization optionsSynchronization with option cascading Synchronization with option starhubSetup order for the different synchronization options Set up the board parametersExample of board setup for three boards Write Data to on-board memory output boards onlyDefine the boards for trigger master Example of board #2 set as trigger master3a Define synchronization or trigger Define the remaining boards as trigger slavesDefine the board for clock master Example board number 0 is clock masterDefine the remaining boards as clock slaves Arm the boards for synchronizationStart all of the trigger master boards Wait for the end of the measurementRead data from the on-board memory acquisition boards only Example for data readingAllocate the Fifo software buffers 2a Write first data for output boardsSpcsyncmasterfifo SpcsyncslavefifoAs trigger slaves Additions for synchronizing different boards General informationCalculating the clock dividers 20xx 30xx 31xx 40xx 45xx 60xx 61xx 70xx 72xxSetting up the clock divider Board type 3122 312040 MS/s Board type 3025 3131Resulting delays using different boards or speeds Delay in standard non Fifo modesDelay in Fifo mode Additions for equal boards with different sample ratesError Codes Error name Value hex Value dec Error descriptionAppendix AppendixExtra I/O with external connectorOption -XMF Pin assignment of the multipin connectorPin assignment of the multipin cable Pin assignment of the internal multipin connector Extra I/O with internal connector Option -XIOD14 D12 D10 D15 D13 D11