Electrical Specifications

2.5Voltage and Current Specifications

2.5.1Absolute Maximum and Minimum Ratings

Table 2-2specifies absolute maximum and minimum ratings. Within functional operation limits, functionality and long-term reliability can be expected.

At conditions outside functional operation condition limits, but within absolute maximum and minimum ratings, neither functionality nor long-term reliability can be expected. If a device is returned to conditions within functional operation limits after having been subjected to conditions outside these limits, but within the absolute maximum and minimum ratings, the device may be functional, but with its lifetime degraded depending on exposure to conditions exceeding the functional operation condition limits.

At conditions exceeding absolute maximum and minimum ratings, neither functionality nor long- term reliability can be expected. Moreover, if a device is subjected to these conditions for any length of time then, when returned to conditions within the functional operating condition limits, it will either not function, or its reliability will be severely degraded.

Although the processor contains protective circuitry to resist damage from static electric discharge, precautions should always be taken to avoid high static voltages or electric fields.

Table 2-2. Processor DC Absolute Maximum Ratings

Symbol

Parameter

Min

Max

Unit

Notes1, 2

VCC

Core voltage with respect to VSS

- 0.3

1.55

V

-

 

VTT

FSB termination voltage with

- 0.3

1.55

V

-

 

respect to VSS

 

 

 

 

 

 

 

TC

Processor case temperature

See Section 5

See Section 5

°C

-

 

TSTORAGE

Processor storage temperature

–40

+85

°C

3,

4

 

 

NOTES:

1.For functional operation, all processor electrical, signal quality, mechanical and thermal specifications must be satisfied.

2.Excessive overshoot or undershoot on any signal will likely result in permanent damage to the processor.

3.Storage temperature is applicable to storage conditions only. In this scenario, the processor must not receive a clock, and no lands can be connected to a voltage bias. Storage within these limits will not affect the long-term reliability of the device. For functional operation, refer to the processor case temperature specifications.

4.This rating applies to the processor and does not include any tray or packaging.

2.5.2DC Voltage and Current Specifications

The processor DC specifications in this section are defined at the processor core silicon and not at the package lands unless noted otherwise. See Chapter 4 for the signal definitions and signal assignments. Most of the signals on the processor FSB are in the GTL+ signal group.

Datasheet

19

Page 19
Image 19
Intel 830 Absolute Maximum and Minimum Ratings, DC Voltage and Current Specifications, Symbol Parameter Min Max Unit

830 specifications

The Intel 830 chipset, introduced in the early 2000s, marked a significant evolution in Intel's chipset architecture for desktop and mobile computing. Known for its support of the Pentium 4 processors, the 830 chipset was tailored for both performance and stability, making it an appealing choice for OEMs and enthusiasts alike.

One of the standout features of the Intel 830 chipset is its support for DDR SDRAM, providing a much-needed boost in memory bandwidth compared to its predecessors. With dual-channel memory support, the chipset could utilize two memory modules simultaneously, which effectively doubled the data transfer rate and enhanced overall system performance. This made the Intel 830 particularly beneficial for applications requiring high memory throughput, such as multimedia processing and gaming.

Another important characteristic of the Intel 830 was its integrated graphics support, featuring Intel's Extreme Graphics technology. This integration allowed for decent graphics performance without the need for a dedicated GPU, making it suitable for budget systems and everyday computing tasks. However, for power users and gaming enthusiasts, the option to incorporate a discrete graphics card remained available through the provided PCI Express x16 slot.

The Intel 830 chipset also boasted advanced I/O capabilities, including support for USB 2.0, which provided faster data transfer rates compared to USB 1.1, and enhanced IDE interfaces for connecting hard drives and optical devices. With its Hyper-Threading technology support, the chipset allowed for improved multitasking efficiency, enabling a single processor to execute multiple threads simultaneously, a feature that was particularly beneficial in server environments and complex computing tasks.

In terms of connectivity, the Intel 830 supported multiple bus interfaces, including PCI Express and AGP, thereby enabling users to expand their systems with various add-on cards. This flexibility contributed to the chipset's longevity in the marketplace, as it catered to a wide range of user needs from light computing to intensive gaming and content creation.

In summary, the Intel 830 chipset combined enhanced memory capabilities, integrated graphics performance, robust I/O features, and flexible expansion options, making it a versatile choice for various computing environments during its time. It played a key role in shaping the landscape of early 2000s computing, paving the way for future advancements in chipset technology. Its legacy continues to influence modern computing architectures, illustrating the lasting impact of Intel’s innovative design principles.