Land Listing and Signal Descriptions

Table 4-2. Numerical Land Assignment

Land

Land Name

Signal Buffer

Direction

#

Type

 

 

 

 

 

 

J12

VCC

Power/Other

 

 

 

 

 

J13

VCC

Power/Other

 

 

 

 

 

J14

VCC

Power/Other

 

 

 

 

 

J15

VCC

Power/Other

 

 

 

 

 

J16

DP0#

Common Clock

Input/Output

 

 

 

 

J17

DP3#

Common Clock

Input/Output

 

 

 

 

J18

VCC

Power/Other

 

 

 

 

 

J19

VCC

Power/Other

 

 

 

 

 

J20

VCC

Power/Other

 

 

 

 

 

J21

VCC

Power/Other

 

 

 

 

 

J22

VCC

Power/Other

 

 

 

 

 

J23

VCC

Power/Other

 

 

 

 

 

J24

VCC

Power/Other

 

 

 

 

 

J25

VCC

Power/Other

 

 

 

 

 

J26

VCC

Power/Other

 

 

 

 

 

J27

VCC

Power/Other

 

 

 

 

 

J28

VCC

Power/Other

 

 

 

 

 

J29

VCC

Power/Other

 

 

 

 

 

J30

VCC

Power/Other

 

 

 

 

 

K1

LINT0

Asynch GTL+

Input

 

 

 

 

K2

VSS

Power/Other

 

 

 

 

 

K3

A20M#

Asynch GTL+

Input

 

 

 

 

K4

REQ0#

Source Synch

Input/Output

 

 

 

 

K5

VSS

Power/Other

 

 

 

 

 

K6

REQ3#

Source Synch

Input/Output

 

 

 

 

K7

VSS

Power/Other

 

 

 

 

 

K8

VCC

Power/Other

 

 

 

 

 

K23

VCC

Power/Other

 

 

 

 

 

K24

VCC

Power/Other

 

 

 

 

 

K25

VCC

Power/Other

 

 

 

 

 

K26

VCC

Power/Other

 

 

 

 

 

K27

VCC

Power/Other

 

 

 

 

 

K28

VCC

Power/Other

 

 

 

 

 

K29

VCC

Power/Other

 

 

 

 

 

K30

VCC

Power/Other

 

 

 

 

 

L1

LINT1

Asynch GTL+

Input

 

 

 

 

L2

TESTHI13

Asynch GTL+

Input

 

 

 

 

L3

VSS

Power/Other

 

 

 

 

 

L4

A6#

Source Synch

Input/Output

 

 

 

 

L5

A3#

Source Synch

Input/Output

 

 

 

 

L6

VSS

Power/Other

 

 

 

 

 

Table 4-2. Numerical Land Assignment

Land

Land Name

Signal Buffer

Direction

#

Type

 

 

 

 

 

 

L7

VSS

Power/Other

 

 

 

 

 

L8

VCC

Power/Other

 

 

 

 

 

L23

VSS

Power/Other

 

 

 

 

 

L24

VSS

Power/Other

 

 

 

 

 

L25

VSS

Power/Other

 

 

 

 

 

L26

VSS

Power/Other

 

 

 

 

 

L27

VSS

Power/Other

 

 

 

 

 

L28

VSS

Power/Other

 

 

 

 

 

L29

VSS

Power/Other

 

 

 

 

 

L30

VSS

Power/Other

 

 

 

 

 

M1

VSS

Power/Other

 

 

 

 

 

M2

THERMTRIP#

Asynch GTL+

Output

 

 

 

 

M3

STPCLK#

Asynch GTL+

Input

 

 

 

 

M4

A7#

Source Synch

Input/Output

 

 

 

 

M5

A5#

Source Synch

Input/Output

 

 

 

 

M6

REQ2#

Source Synch

Input/Output

 

 

 

 

M7

VSS

Power/Other

 

 

 

 

 

M8

VCC

Power/Other

 

 

 

 

 

M23

VCC

Power/Other

 

 

 

 

 

M24

VCC

Power/Other

 

 

 

 

 

M25

VCC

Power/Other

 

 

 

 

 

M26

VCC

Power/Other

 

 

 

 

 

M27

VCC

Power/Other

 

 

 

 

 

M28

VCC

Power/Other

 

 

 

 

 

M29

VCC

Power/Other

 

 

 

 

 

M30

VCC

Power/Other

 

 

 

 

 

N1

PWRGOOD

Power/Other

Input

 

 

 

 

N2

IGNNE#

Asynch GTL+

Input

 

 

 

 

N3

VSS

Power/Other

 

 

 

 

 

N4

RESERVED

 

 

 

 

 

 

N5

RESERVED

 

 

 

 

 

 

N6

VSS

Power/Other

 

 

 

 

 

N7

VSS

Power/Other

 

 

 

 

 

N8

VCC

Power/Other

 

 

 

 

 

N23

VCC

Power/Other

 

 

 

 

 

N24

VCC

Power/Other

 

 

 

 

 

N25

VCC

Power/Other

 

 

 

 

 

N26

VCC

Power/Other

 

 

 

 

 

N27

VCC

Power/Other

 

 

 

 

 

N28

VCC

Power/Other

 

 

 

 

 

N29

VCC

Power/Other

 

 

 

 

 

Datasheet

59

Page 59
Image 59
Intel 830 manual J12

830 specifications

The Intel 830 chipset, introduced in the early 2000s, marked a significant evolution in Intel's chipset architecture for desktop and mobile computing. Known for its support of the Pentium 4 processors, the 830 chipset was tailored for both performance and stability, making it an appealing choice for OEMs and enthusiasts alike.

One of the standout features of the Intel 830 chipset is its support for DDR SDRAM, providing a much-needed boost in memory bandwidth compared to its predecessors. With dual-channel memory support, the chipset could utilize two memory modules simultaneously, which effectively doubled the data transfer rate and enhanced overall system performance. This made the Intel 830 particularly beneficial for applications requiring high memory throughput, such as multimedia processing and gaming.

Another important characteristic of the Intel 830 was its integrated graphics support, featuring Intel's Extreme Graphics technology. This integration allowed for decent graphics performance without the need for a dedicated GPU, making it suitable for budget systems and everyday computing tasks. However, for power users and gaming enthusiasts, the option to incorporate a discrete graphics card remained available through the provided PCI Express x16 slot.

The Intel 830 chipset also boasted advanced I/O capabilities, including support for USB 2.0, which provided faster data transfer rates compared to USB 1.1, and enhanced IDE interfaces for connecting hard drives and optical devices. With its Hyper-Threading technology support, the chipset allowed for improved multitasking efficiency, enabling a single processor to execute multiple threads simultaneously, a feature that was particularly beneficial in server environments and complex computing tasks.

In terms of connectivity, the Intel 830 supported multiple bus interfaces, including PCI Express and AGP, thereby enabling users to expand their systems with various add-on cards. This flexibility contributed to the chipset's longevity in the marketplace, as it catered to a wide range of user needs from light computing to intensive gaming and content creation.

In summary, the Intel 830 chipset combined enhanced memory capabilities, integrated graphics performance, robust I/O features, and flexible expansion options, making it a versatile choice for various computing environments during its time. It played a key role in shaping the landscape of early 2000s computing, paving the way for future advancements in chipset technology. Its legacy continues to influence modern computing architectures, illustrating the lasting impact of Intel’s innovative design principles.