Land Listing and Signal Descriptions

Table 4-2. Numerical Land Assignment

Land

Land Name

Signal Buffer

Direction

#

Type

 

 

 

 

 

 

AG10

VSS

Power/Other

 

 

 

 

 

AG11

VCC

Power/Other

 

 

 

 

 

AG12

VCC

Power/Other

 

 

 

 

 

AG13

VSS

Power/Other

 

 

 

 

 

AG14

VCC

Power/Other

 

 

 

 

 

AG15

VCC

Power/Other

 

 

 

 

 

AG16

VSS

Power/Other

 

 

 

 

 

AG17

VSS

Power/Other

 

 

 

 

 

AG18

VCC

Power/Other

 

 

 

 

 

AG19

VCC

Power/Other

 

 

 

 

 

AG20

VSS

Power/Other

 

 

 

 

 

AG21

VCC

Power/Other

 

 

 

 

 

AG22

VCC

Power/Other

 

 

 

 

 

AG23

VSS

Power/Other

 

 

 

 

 

AG24

VSS

Power/Other

 

 

 

 

 

AG25

VCC

Power/Other

 

 

 

 

 

AG26

VCC

Power/Other

 

 

 

 

 

AG27

VCC

Power/Other

 

 

 

 

 

AG28

VCC

Power/Other

 

 

 

 

 

AG29

VCC

Power/Other

 

 

 

 

 

AG30

VCC

Power/Other

 

 

 

 

 

AH1

VSS

Power/Other

 

 

 

 

 

AH2

RESERVED

 

 

 

 

 

 

AH3

VSS

Power/Other

 

 

 

 

 

AH4

A32#

Source Synch

Input/Output

 

 

 

 

AH5

A33#

Source Synch

Input/Output

 

 

 

 

AH6

VSS

Power/Other

 

 

 

 

 

AH7

VSS

Power/Other

 

 

 

 

 

AH8

VCC

Power/Other

 

 

 

 

 

AH9

VCC

Power/Other

 

 

 

 

 

AH10

VSS

Power/Other

 

 

 

 

 

AH11

VCC

Power/Other

 

 

 

 

 

AH12

VCC

Power/Other

 

 

 

 

 

AH13

VSS

Power/Other

 

 

 

 

 

AH14

VCC

Power/Other

 

 

 

 

 

AH15

VCC

Power/Other

 

 

 

 

 

AH16

VSS

Power/Other

 

 

 

 

 

AH17

VSS

Power/Other

 

 

 

 

 

AH18

VCC

Power/Other

 

 

 

 

 

AH19

VCC

Power/Other

 

 

 

 

 

AH20

VSS

Power/Other

 

 

 

 

 

Table 4-2. Numerical Land Assignment

Land

Land Name

Signal Buffer

Direction

#

Type

 

 

 

 

 

 

AH21

VCC

Power/Other

 

 

 

 

 

AH22

VCC

Power/Other

 

 

 

 

 

AH23

VSS

Power/Other

 

 

 

 

 

AH24

VSS

Power/Other

 

 

 

 

 

AH25

VCC

Power/Other

 

 

 

 

 

AH26

VCC

Power/Other

 

 

 

 

 

AH27

VCC

Power/Other

 

 

 

 

 

AH28

VCC

Power/Other

 

 

 

 

 

AH29

VCC

Power/Other

 

 

 

 

 

AH30

VCC

Power/Other

 

 

 

 

 

AJ1

BPM1#

Common Clock

Input/Output

 

 

 

 

AJ2

BPM0#

Common Clock

Input/Output

 

 

 

 

AJ3

ITP_CLK1

TAP

Input

 

 

 

 

AJ4

VSS

Power/Other

 

 

 

 

 

AJ5

A34#

Source Synch

Input/Output

 

 

 

 

AJ6

A35#

Source Synch

Input/Output

 

 

 

 

AJ7

VSS

Power/Other

 

 

 

 

 

AJ8

VCC

Power/Other

 

 

 

 

 

AJ9

VCC

Power/Other

 

 

 

 

 

AJ10

VSS

Power/Other

 

 

 

 

 

AJ11

VCC

Power/Other

 

 

 

 

 

AJ12

VCC

Power/Other

 

 

 

 

 

AJ13

VSS

Power/Other

 

 

 

 

 

AJ14

VCC

Power/Other

 

 

 

 

 

AJ15

VCC

Power/Other

 

 

 

 

 

AJ16

VSS

Power/Other

 

 

 

 

 

AJ17

VSS

Power/Other

 

 

 

 

 

AJ18

VCC

Power/Other

 

 

 

 

 

AJ19

VCC

Power/Other

 

 

 

 

 

AJ20

VSS

Power/Other

 

 

 

 

 

AJ21

VCC

Power/Other

 

 

 

 

 

AJ22

VCC

Power/Other

 

 

 

 

 

AJ23

VSS

Power/Other

 

 

 

 

 

AJ24

VSS

Power/Other

 

 

 

 

 

AJ25

VCC

Power/Other

 

 

 

 

 

AJ26

VCC

Power/Other

 

 

 

 

 

AJ27

VSS

Power/Other

 

 

 

 

 

AJ28

VSS

Power/Other

 

 

 

 

 

AJ29

VSS

Power/Other

 

 

 

 

 

AJ30

VSS

Power/Other

 

 

 

 

 

AK1

THERMDC

Power/Other

 

 

 

 

 

Datasheet

63

Page 63
Image 63
Intel 830 manual AH1 VSS

830 specifications

The Intel 830 chipset, introduced in the early 2000s, marked a significant evolution in Intel's chipset architecture for desktop and mobile computing. Known for its support of the Pentium 4 processors, the 830 chipset was tailored for both performance and stability, making it an appealing choice for OEMs and enthusiasts alike.

One of the standout features of the Intel 830 chipset is its support for DDR SDRAM, providing a much-needed boost in memory bandwidth compared to its predecessors. With dual-channel memory support, the chipset could utilize two memory modules simultaneously, which effectively doubled the data transfer rate and enhanced overall system performance. This made the Intel 830 particularly beneficial for applications requiring high memory throughput, such as multimedia processing and gaming.

Another important characteristic of the Intel 830 was its integrated graphics support, featuring Intel's Extreme Graphics technology. This integration allowed for decent graphics performance without the need for a dedicated GPU, making it suitable for budget systems and everyday computing tasks. However, for power users and gaming enthusiasts, the option to incorporate a discrete graphics card remained available through the provided PCI Express x16 slot.

The Intel 830 chipset also boasted advanced I/O capabilities, including support for USB 2.0, which provided faster data transfer rates compared to USB 1.1, and enhanced IDE interfaces for connecting hard drives and optical devices. With its Hyper-Threading technology support, the chipset allowed for improved multitasking efficiency, enabling a single processor to execute multiple threads simultaneously, a feature that was particularly beneficial in server environments and complex computing tasks.

In terms of connectivity, the Intel 830 supported multiple bus interfaces, including PCI Express and AGP, thereby enabling users to expand their systems with various add-on cards. This flexibility contributed to the chipset's longevity in the marketplace, as it catered to a wide range of user needs from light computing to intensive gaming and content creation.

In summary, the Intel 830 chipset combined enhanced memory capabilities, integrated graphics performance, robust I/O features, and flexible expansion options, making it a versatile choice for various computing environments during its time. It played a key role in shaping the landscape of early 2000s computing, paving the way for future advancements in chipset technology. Its legacy continues to influence modern computing architectures, illustrating the lasting impact of Intel’s innovative design principles.