Intel 830 manual Icc a Voltage Deviation from VID Setting V 1, 2, 000, 065, 072

Page 21

Electrical Specifications

5.775_VR_CONFIG_05A and 775_VR_CONFIG_05B refer to voltage regulator configurations that are defined in the Voltage Regulator Down (VRD) 10.1 Design Guide For Desktop LGA775 Socket.

6.Refer to Table 2-4and Figure 2-1for the minimum, typical, and maximum VCC allowed for a given current. The processor should not be subjected to any VCC and ICC combination wherein VCC exceeds VCC_MAX for a given current.

7.These frequencies will operate properly in a system designed for 775_VR_CONFIG_05B processors. The power and ICC will be incrementally higher in this configuration due to the improved loadline and resulting higher VCC.

8.ICC_MAX is based on the VCC Maximum loadline. Refer to Figure 2-1and Figure 2-2for details.

9.ICC_RESET is specified while PWRGOOD and RESET# are active.

10.The current specified is also for AutoHALT State.

11.ICC Stop-Grant and ICC Enhanced Halt are specified at VCC_MAX.

12.These parameters are based on design characterization and are not tested.

13.The maximum instantaneous current the processor will draw while the thermal control circuit is active as indicated by the assertion of PROCHOT# is the same as the maximum ICC for the processor.

14.VTT must be provided via a separate voltage source and not be connected to VCC. This specification is measured at the land.

15.Baseboard bandwidth is limited to 20 MHz.

16.This is maximum total current drawn from VTT plane by only the processor. This specification does not include the current coming from RTT (through the signal line). Refer to the Voltage Regulator Down (VRD) 10.1 Design Guide For Desktop LGA775 Socket to determine the total ITT drawn by the system.

Table 2-4. VCC Static and Transient Tolerance for 775_VR_CONFIG_05A Pentium D Processor

Icc (A)

Voltage Deviation from VID Setting (V)1, 2, 3

-

Maximum Voltage

Typical Voltage

Minimum Voltage

1.30 mΩ

1.38 mΩ

1.45 mΩ

 

 

 

 

 

0

0.000

-0.019

-0.038

 

 

 

 

5

-0.007

-0.026

-0.045

 

 

 

 

10

-0.013

-0.033

-0.053

 

 

 

 

15

-0.020

-0.040

-0.060

 

 

 

 

20

-0.026

-0.047

-0.067

 

 

 

 

25

-0.033

-0.053

-0.074

 

 

 

 

30

-0.039

-0.060

-0.082

 

 

 

 

35

-0.046

-0.067

-0.089

 

 

 

 

40

-0.052

-0.074

-0.096

 

 

 

 

45

-0.059

-0.081

-0.103

 

 

 

 

50

-0.065

-0.088

-0.111

 

 

 

 

55

-0.072

-0.095

-0.118

 

 

 

 

60

-0.078

-0.102

-0.125

 

 

 

 

65

-0.085

-0.108

-0.132

 

 

 

 

70

-0.091

-0.115

-0.140

 

 

 

 

75

-0.098

-0.122

-0.147

 

 

 

 

80

-0.101

-0.126

-0.151

 

 

 

 

85

-0.111

-0.136

-0.161

 

 

 

 

90

-0.117

-0.143

-0.169

 

 

 

 

95

-0.124

-0.150

-0.176

 

 

 

 

100

-0.130

-0.157

-0.183

 

 

 

 

NOTES:

1.The loadline specification includes both static and transient limits except for overshoot allowed as shown in Section 2.5.3.

2.This table is intended to aid in reading discrete points on Figure 2-1.

3.The loadlines specify voltage limits at the die measured at the VCC_SENSE and VSS_SENSE lands. Voltage regulation feedback for voltage regulator circuits must be taken from processor VCC and VSS lands. Refer to the Voltage Regulator Down (VRD) 10.1 Design Guide For Desktop LGA775 Socket for socket loadline guide- lines and VR implementation details.

Datasheet

21

Image 21
Contents Intel Pentium D Processor 800Δ Sequence DatasheetContents Contents Halt and Enhanced Halt Powerdown States Figures Tables Revision History Revision Description DateInitial release May Contents Intel Pentium D Processor 800 Sequence Features Contents Introduction Processor Packaging Terminology TerminologyReferences ReferencesIntroduction Power and Ground Lands Electrical SpecificationsDecoupling Guidelines VCC DecouplingFSB Decoupling Voltage IdentificationVID5 VID4 VID3 VID2 VID1 VID0 Voltage Identification DefinitionReserved, Unused, FC and Testhi Signals DC Voltage and Current Specifications Voltage and Current SpecificationsSymbol Parameter Min Max Unit Absolute Maximum and Minimum RatingsSymbol Parameter Min Typ Max Unit Voltage and Current SpecificationsVID Vttout ICC000 Icc a Voltage Deviation from VID Setting V 1, 2065 072Icc a 007 026 000 019013 033 020 040Icc a VCC Overshoot Specifications VCC Overshoot SpecificationMagnitude of V CC overshoot above VID 050 Time duration of V CC overshoot above VIDSignaling Specifications FSB Signal GroupsDie Voltage Validation Signal Group FSB Signal GroupsSignals Signals Associated Strobe2 GTL+ Asynchronous Signals Signal CharacteristicsSignal Reference Voltages 10. BSEL20 and VID50 Signal Group DC Specifications FSB DC Specifications11. GTL+ Signal Group DC Specifications Symbol Parameter Max Unit13. GTL+ Asynchronous Signal Group DC Specifications 12. Pwrgood Input and TAP Signal Group DC Specifications15. Bootselect and MSID10 DC Specifications 14. Vttpwrgd DC SpecificationsSymbol Parameter Min Typ Max Units 16. GTL+ Bus Voltage DefinitionsFSB Frequency Select Signals Clock Specifications17. Core Frequency to FSB Multiplier Configuration FSB Clock BCLK10 and Processor Clocking18. BSEL20 Frequency Table for BCLK10 Phase Lock Loop PLL and FilterFSB Frequency 133 MHzPhase Lock Loop PLL Filter Requirements Package Mechanical Drawing Package Mechanical SpecificationsProcessor Package Drawing Package Mechanical Specifications Package Mechanical Specifications Processor Loading Specifications Package Loading SpecificationsProcessor Component Keep-Out Zones Package Handling GuidelinesProcessor Mass Specification Package Insertion SpecificationsProcessor Materials Processor MarkingsProcessor Top-Side Marking Example Intel Pentium D Processor Processor Land Coordinates, Top View Processor Land CoordinatesProcessor Land Assignments Land Listing and Signal DescriptionsLandout Diagram Top View Left Side Landout Diagram Top View Right Side Alphabetical Land Assignments Land Name Signal Buffer Direction TypeDBI0# GTLREF1 VCC AC8 VCC AK8 Vccmb AN5 VSS AA3 VSS AJ4 E11 Power/Other Vssmb AN6 Numerical Land Assignment Land Land Name Signal Buffer Direction TypeReserved ADS# Reserved DEFER# J12 N30 AA1 Vttoutright AD4 VSS AH1 VSS AK2 VSS AN1 VSS Signal Description Sheet 1 Alphabetical Signals ReferenceRequest Signals Name Type DescriptionName Signal Description Sheet 2Signal Description Sheet 3 Bus Signal Data Bus SignalsData Group Signal Description Sheet 4 Signal Description Sheet 5 Signal Description Sheet 6 RESET#Pwrgood Signal Description Sheet 7 Signal Description Sheet 8 Land Listing and Signal Descriptions Thermal Specifications and Design Considerations Processor Thermal SpecificationsThermal Specifications Processor Thermal Specifications Minimum Maximum T C CGHz Thermal Profile for the Pentium D Processor with PRB=1 Power Maximum T CThermal Profile for the Pentium D Processor with PRB=0 PowerProcessor Thermal Features Thermal MetrologyThermal Monitor PROCHOT# Signal On-Demand ModeFORCEPR# Signal Pin Tcontrol and Fan Speed Reduction THERMTRIP# SignalThermal Diode Thermal Diode ParametersSignal Name Land Number Signal Description Thermal Diode InterfaceDiode anode Thermal Specifications and Design Considerations Power-On Configuration Options FeaturesClock Control and Low Power States Power-On Configuration Option SignalsNormal State Halt and Enhanced Halt Powerdown StatesStop-Grant State Enhanced Halt Powerdown StateEnhanced Intel SpeedStep Technology Enhanced Halt Snoop or Halt Snoop State, Grant Snoop StateMechanical Representation of the Boxed Processor Boxed Processor SpecificationsBoxed Processor Cooling Solution Dimensions Mechanical SpecificationsBoxed Processor Fan Heatsink Weight Fan Heatsink Power SupplyElectrical Requirements +12 V 12 volt fan power supply Fan Heatsink Power and Signal SpecificationsDescription Min Typ Max Unit Sense frequencyBoxed Processor Cooling Requirements Thermal SpecificationsBoxed Processor Specifications Variable Speed Fan Boxed Processor Fan Boxed Processor Fan SpeedFan operates at its highest speed Boxed Processor Specifications Mechanical Representation of the Boxed Processor Cooling Solution Dimensions Boxed Processor Support and Retention Module SRM Assembly Stack Including the Support and Retention ModuleControl Sense Sense frequencyDatasheet 101 Boxed Processor Boxed Processor Fan Speed Boxed Processor TMA Set PointsDatasheet 103 104 Logic Analyzer Interface LAI Debug Tools SpecificationsMechanical Considerations Electrical Considerations106

830 specifications

The Intel 830 chipset, introduced in the early 2000s, marked a significant evolution in Intel's chipset architecture for desktop and mobile computing. Known for its support of the Pentium 4 processors, the 830 chipset was tailored for both performance and stability, making it an appealing choice for OEMs and enthusiasts alike.

One of the standout features of the Intel 830 chipset is its support for DDR SDRAM, providing a much-needed boost in memory bandwidth compared to its predecessors. With dual-channel memory support, the chipset could utilize two memory modules simultaneously, which effectively doubled the data transfer rate and enhanced overall system performance. This made the Intel 830 particularly beneficial for applications requiring high memory throughput, such as multimedia processing and gaming.

Another important characteristic of the Intel 830 was its integrated graphics support, featuring Intel's Extreme Graphics technology. This integration allowed for decent graphics performance without the need for a dedicated GPU, making it suitable for budget systems and everyday computing tasks. However, for power users and gaming enthusiasts, the option to incorporate a discrete graphics card remained available through the provided PCI Express x16 slot.

The Intel 830 chipset also boasted advanced I/O capabilities, including support for USB 2.0, which provided faster data transfer rates compared to USB 1.1, and enhanced IDE interfaces for connecting hard drives and optical devices. With its Hyper-Threading technology support, the chipset allowed for improved multitasking efficiency, enabling a single processor to execute multiple threads simultaneously, a feature that was particularly beneficial in server environments and complex computing tasks.

In terms of connectivity, the Intel 830 supported multiple bus interfaces, including PCI Express and AGP, thereby enabling users to expand their systems with various add-on cards. This flexibility contributed to the chipset's longevity in the marketplace, as it catered to a wide range of user needs from light computing to intensive gaming and content creation.

In summary, the Intel 830 chipset combined enhanced memory capabilities, integrated graphics performance, robust I/O features, and flexible expansion options, making it a versatile choice for various computing environments during its time. It played a key role in shaping the landscape of early 2000s computing, paving the way for future advancements in chipset technology. Its legacy continues to influence modern computing architectures, illustrating the lasting impact of Intel’s innovative design principles.