Intel 830 manual FORCEPR# Signal Pin

Page 81

Thermal Specifications and Design Considerations

As a bi-directional signal, PROCHOT# allows for some protection of various components from over-temperature situations. The PROCHOT# signal is bi-directional in that it can either signal when the processor (either core) has reached its maximum operating temperature or be driven from an external source to activate the TCC. The ability to activate the TCC via PROCHOT# can provide a means for thermal protection of system components.

Bi-directional PROCHOT# (if enabled) can allow VR thermal designs to target maximum sustained current instead of maximum current. Systems should still provide proper cooling for the VR, and rely on bi-directional PROCHOT# only as a backup in case of system cooling failure. The system thermal design should allow the power delivery circuitry to operate within its temperature specification even while the processor is operating at its Thermal Design Power. With a properly designed and characterized thermal solution, it is anticipated that bi-directional PROCHOT# would only be asserted for very short periods of time when running the most power intensive applications. An under-designed thermal solution that is not able to prevent excessive assertion of PROCHOT# in the anticipated ambient environment may cause a noticeable performance loss. Refer to the Voltage Regulator-Down (VRD) 10.1 Design Guide for Desktop Socket 775 for details on implementing the bi-directional PROCHOT# feature. Contact your Intel representative for further details and documentation.

5.2.4FORCEPR# Signal Pin

The FORCEPR# (force power reduction) input can be used by the platform to cause the processor (both cores) to activate the TCC. If the Thermal Monitor is enabled, the TCC will be activated upon the assertion of the FORCEPR# signal. The TCC will remain active until the system de- asserts FORCEPR#. FORCEPR# is an asynchronous input.

FORCEPR# can be used to thermally protect other system components. To use the VR as an example, when the FORCEPR# pin is asserted, the TCC circuit in the processor (both cores) will activate, reducing the current consumption of the processor and the corresponding temperature of the VR.

It should be noted that assertion of the FORCEPR# does not automatically assert PROCHOT#. As mentioned previously, the PROCHOT# signal is asserted when a high temperature situation is detected. A minimum pulse width of 500 µs is recommend when the FORCEPR# is asserted by the system. Sustained activation of the FORCEPR# pin may cause noticeable platform performance degradation.

One application is the thermal protection of voltage regulators (VR). System designers can create a circuit to monitor the VR temperature and activate the TCC when the temperature limit of the VR is reached. By asserting FORCEPR# (pulled-low) and activating the TCC, the VR can cool down as a result of reduced processor power consumption. FORCEPR# can allow VR thermal designs to target maximum sustained current instead of maximum current. Systems should still provide proper cooling for the VR, and rely on FORCEPR# only as a backup in case of system cooling failure. The system thermal design should allow the power delivery circuitry to operate within its temperature specification even while the processor is operating at its Thermal Design Power. With a properly designed and characterized thermal solution, it is anticipated that FORCEPR# would only be asserted for very short periods of time when running the most power intensive applications. An under-designed thermal solution that is not able to prevent excessive assertion of FORCEPR# in the anticipated ambient environment may cause a noticeable performance loss. Refer to the Voltage Regulator-Down (VRD) 10.1 Design Guide for Desktop Socket 775 for details on implementing the FORCEPR# feature. Contact your Intel representative for further details and documentation.

Datasheet

81

Image 81
Contents Intel Pentium D Processor 800Δ Sequence DatasheetContents Contents Halt and Enhanced Halt Powerdown States Figures Tables Revision History Revision Description DateInitial release May Contents Intel Pentium D Processor 800 Sequence Features Contents Introduction Processor Packaging Terminology TerminologyReferences ReferencesIntroduction Power and Ground Lands Electrical SpecificationsDecoupling Guidelines VCC DecouplingFSB Decoupling Voltage IdentificationVID5 VID4 VID3 VID2 VID1 VID0 Voltage Identification DefinitionReserved, Unused, FC and Testhi Signals DC Voltage and Current Specifications Voltage and Current SpecificationsSymbol Parameter Min Max Unit Absolute Maximum and Minimum RatingsSymbol Parameter Min Typ Max Unit Voltage and Current SpecificationsVID Vttout ICC000 Icc a Voltage Deviation from VID Setting V 1, 2065 072Icc a 007 026 000 019013 033 020 040Icc a VCC Overshoot Specifications VCC Overshoot SpecificationMagnitude of V CC overshoot above VID 050 Time duration of V CC overshoot above VIDSignaling Specifications FSB Signal GroupsDie Voltage Validation Signal Group FSB Signal GroupsSignals Signals Associated Strobe2 GTL+ Asynchronous Signals Signal CharacteristicsSignal Reference Voltages 10. BSEL20 and VID50 Signal Group DC Specifications FSB DC Specifications11. GTL+ Signal Group DC Specifications Symbol Parameter Max Unit13. GTL+ Asynchronous Signal Group DC Specifications 12. Pwrgood Input and TAP Signal Group DC Specifications15. Bootselect and MSID10 DC Specifications 14. Vttpwrgd DC SpecificationsSymbol Parameter Min Typ Max Units 16. GTL+ Bus Voltage DefinitionsFSB Frequency Select Signals Clock Specifications17. Core Frequency to FSB Multiplier Configuration FSB Clock BCLK10 and Processor Clocking18. BSEL20 Frequency Table for BCLK10 Phase Lock Loop PLL and FilterFSB Frequency 133 MHzPhase Lock Loop PLL Filter Requirements Package Mechanical Drawing Package Mechanical SpecificationsProcessor Package Drawing Package Mechanical Specifications Package Mechanical Specifications Processor Loading Specifications Package Loading SpecificationsProcessor Component Keep-Out Zones Package Handling GuidelinesProcessor Mass Specification Package Insertion SpecificationsProcessor Materials Processor MarkingsProcessor Top-Side Marking Example Intel Pentium D Processor Processor Land Coordinates, Top View Processor Land CoordinatesProcessor Land Assignments Land Listing and Signal DescriptionsLandout Diagram Top View Left Side Landout Diagram Top View Right Side Alphabetical Land Assignments Land Name Signal Buffer Direction TypeDBI0# GTLREF1 VCC AC8 VCC AK8 Vccmb AN5 VSS AA3 VSS AJ4 E11 Power/Other Vssmb AN6 Numerical Land Assignment Land Land Name Signal Buffer Direction TypeReserved ADS# Reserved DEFER# J12 N30 AA1 Vttoutright AD4 VSS AH1 VSS AK2 VSS AN1 VSS Signal Description Sheet 1 Alphabetical Signals ReferenceRequest Signals Name Type DescriptionName Signal Description Sheet 2Signal Description Sheet 3 Bus Signal Data Bus SignalsData Group Signal Description Sheet 4 Signal Description Sheet 5 Signal Description Sheet 6 RESET#Pwrgood Signal Description Sheet 7 Signal Description Sheet 8 Land Listing and Signal Descriptions Thermal Specifications and Design Considerations Processor Thermal SpecificationsThermal Specifications Processor Thermal Specifications Minimum Maximum T C CGHz Thermal Profile for the Pentium D Processor with PRB=1 Power Maximum T CThermal Profile for the Pentium D Processor with PRB=0 PowerProcessor Thermal Features Thermal MetrologyThermal Monitor PROCHOT# Signal On-Demand ModeFORCEPR# Signal Pin Tcontrol and Fan Speed Reduction THERMTRIP# SignalThermal Diode Thermal Diode ParametersSignal Name Land Number Signal Description Thermal Diode InterfaceDiode anode Thermal Specifications and Design Considerations Power-On Configuration Options FeaturesClock Control and Low Power States Power-On Configuration Option SignalsNormal State Halt and Enhanced Halt Powerdown StatesStop-Grant State Enhanced Halt Powerdown StateEnhanced Intel SpeedStep Technology Enhanced Halt Snoop or Halt Snoop State, Grant Snoop StateMechanical Representation of the Boxed Processor Boxed Processor SpecificationsBoxed Processor Cooling Solution Dimensions Mechanical SpecificationsBoxed Processor Fan Heatsink Weight Fan Heatsink Power SupplyElectrical Requirements +12 V 12 volt fan power supply Fan Heatsink Power and Signal SpecificationsDescription Min Typ Max Unit Sense frequencyBoxed Processor Cooling Requirements Thermal SpecificationsBoxed Processor Specifications Variable Speed Fan Boxed Processor Fan Boxed Processor Fan SpeedFan operates at its highest speed Boxed Processor Specifications Mechanical Representation of the Boxed Processor Cooling Solution Dimensions Boxed Processor Support and Retention Module SRM Assembly Stack Including the Support and Retention ModuleControl Sense Sense frequencyDatasheet 101 Boxed Processor Boxed Processor Fan Speed Boxed Processor TMA Set PointsDatasheet 103 104 Logic Analyzer Interface LAI Debug Tools SpecificationsMechanical Considerations Electrical Considerations106

830 specifications

The Intel 830 chipset, introduced in the early 2000s, marked a significant evolution in Intel's chipset architecture for desktop and mobile computing. Known for its support of the Pentium 4 processors, the 830 chipset was tailored for both performance and stability, making it an appealing choice for OEMs and enthusiasts alike.

One of the standout features of the Intel 830 chipset is its support for DDR SDRAM, providing a much-needed boost in memory bandwidth compared to its predecessors. With dual-channel memory support, the chipset could utilize two memory modules simultaneously, which effectively doubled the data transfer rate and enhanced overall system performance. This made the Intel 830 particularly beneficial for applications requiring high memory throughput, such as multimedia processing and gaming.

Another important characteristic of the Intel 830 was its integrated graphics support, featuring Intel's Extreme Graphics technology. This integration allowed for decent graphics performance without the need for a dedicated GPU, making it suitable for budget systems and everyday computing tasks. However, for power users and gaming enthusiasts, the option to incorporate a discrete graphics card remained available through the provided PCI Express x16 slot.

The Intel 830 chipset also boasted advanced I/O capabilities, including support for USB 2.0, which provided faster data transfer rates compared to USB 1.1, and enhanced IDE interfaces for connecting hard drives and optical devices. With its Hyper-Threading technology support, the chipset allowed for improved multitasking efficiency, enabling a single processor to execute multiple threads simultaneously, a feature that was particularly beneficial in server environments and complex computing tasks.

In terms of connectivity, the Intel 830 supported multiple bus interfaces, including PCI Express and AGP, thereby enabling users to expand their systems with various add-on cards. This flexibility contributed to the chipset's longevity in the marketplace, as it catered to a wide range of user needs from light computing to intensive gaming and content creation.

In summary, the Intel 830 chipset combined enhanced memory capabilities, integrated graphics performance, robust I/O features, and flexible expansion options, making it a versatile choice for various computing environments during its time. It played a key role in shaping the landscape of early 2000s computing, paving the way for future advancements in chipset technology. Its legacy continues to influence modern computing architectures, illustrating the lasting impact of Intel’s innovative design principles.