The highest level of control is the motion program. This can be stored in the host computer or in the controller. This program describes the tasks in terms of the motors that need to be controlled, the distances and the speed.

LEVEL

3

MOTION

PROGRAMMING

2

1

MOTION

PROFILING

CLOSED-LOOP

CONTROL

Figure 10.2 - Levels of Control Functions

The three levels of control may be viewed as different levels of management. The top manager, the motion program, may specify the following instruction, for example.

PR 6000,4000

SP 20000,20000

AC 200000,00000 BG A

AD 2000 BG B EN

This program corresponds to the velocity profiles shown in Fig. 10.3. Note that the profiled positions show where the motors must be at any instant of time.

Finally, it remains up to the servo system to verify that the motor follows the profiled position by closing the servo loop.

The following section explains the operation of the servo system. First, it is explained qualitatively, and then the explanation is repeated using analytical tools for those who are more theoretically inclined.

158 • Chapter 10 Theory of Operation

DMC-3425

Page 166
Image 166
Galil DMC-3425 user manual Level

DMC-3425 specifications

The Galil DMC-3425 is a sophisticated motion controller known for its versatility and high performance in various industrial applications. Designed primarily for multi-axis control, it is well-suited for robotics, CNC machinery, and automated manufacturing systems.

One of the standout features of the DMC-3425 is its ability to control up to 32 axes simultaneously, providing unparalleled flexibility for complex motion tasks. This capability is enhanced by its advanced motion algorithms that ensure smooth and precise movements, essential for high-quality manufacturing and assembly processes. The controller supports a variety of motor types, including servo, stepper, and brushless motors, making it compatible with a wide range of existing equipment.

In terms of connectivity, the DMC-3425 offers an extensive selection of communication options. It supports Ethernet, RS-232, and RS-485 interfaces, allowing for seamless integration with various industrial networks, including EtherCAT and CANopen. This connectivity is vital for real-time data exchange and remote monitoring, enhancing overall system efficiency.

The controller is powered by Galil's innovative software architecture, which includes the DMC programming language. This user-friendly language enables engineers to create complex motion profiles easily, with support for trajectory generation, coordinate transformations, and PID control. The DMC-3425 also features built-in commands for motion profiling, including linear and circular interpolation, allowing for sophisticated path planning.

Moreover, the DMC-3425 comes equipped with an integrated programming environment that facilitates rapid application development. Users can simulate motion profiles before implementation, reducing downtime and minimizing errors. This environment is designed for quick learning, making it accessible even for those new to motion control.

Additionally, the Galil DMC-3425 features a robust safety architecture. It includes over-temperature detection, emergency stop inputs, and configurable limits for position and speed, ensuring safe operation in various environments.

Overall, the Galil DMC-3425 is a powerful and flexible motion controller that combines advanced technologies with user-friendly design. Its ability to handle multiple axes, extensive connectivity options, and comprehensive programming environment make it a top choice for manufacturers seeking to enhance automation and improve productivity in their operations.