Configuring Hardware Banks

The extended I/O on the DMC-34x5 with DB-14064 is configured using the CO command. The banks of buffers on the IOM-1964 are configured to match by inserting the appropriate IC’s and resistor packs. The layout of each of the I/O banks is identical.

For example, here is the layout of bank 0:

Resistor Pack for outputs

Resistor Pack for inputs

Resistor Pack for outputs

Figure A-4

RP03 OUT

 

RP04 IN

U03

U04

Input Buffer IC's

 

 

 

 

 

 

IN

 

RP02

U01

U02

Output Buffer IC's

 

 

 

 

OUT

 

OUT

 

 

 

 

Indicator LED's

D0

 

 

Resistor Pack for

 

 

LED's

 

 

 

C6

 

 

 

RP01OUT

17 18 19 20 21 22 23 24

 

 

Bank 0

 

All of the banks have the same configuration pattern as diagrammed above in figure A-4. For example, all banks have Ux1 and Ux2 output optical isolator IC sockets, labeled in bank 0 as U01 and U02, in bank 1 as U11 and U12, and so on. Each bank is configured as inputs or outputs by inserting optical isolator IC’s and resistor packs in the appropriate sockets. A group of eight LED’s indicates the status of each I/O point. The numbers above the Bank 0 label indicate the number of the I/O point corresponding to the LED above it.

Digital Inputs

Configuring a bank for inputs requires that the Ux3 and Ux4 sockets be populated with NEC2505 optical isolation integrated circuits. The IOM-1964 is shipped with a default configuration of banks 2- 7 configured as inputs. The output IC sockets Ux1 and Ux2 must be empty. The input IC’s are labeled Ux3 and Ux4. For example, in bank 0 the IC’s are U03 and U04, bank 1 input IC’s are labeled U13 and U14, and so on. Also, the resistor pack RPx4 must be inserted into the bank to finish the input configuration.

DMC-3425

Appendices185

Page 193
Image 193
Galil DMC-3425 user manual Configuring Hardware Banks, Figure A-4

DMC-3425 specifications

The Galil DMC-3425 is a sophisticated motion controller known for its versatility and high performance in various industrial applications. Designed primarily for multi-axis control, it is well-suited for robotics, CNC machinery, and automated manufacturing systems.

One of the standout features of the DMC-3425 is its ability to control up to 32 axes simultaneously, providing unparalleled flexibility for complex motion tasks. This capability is enhanced by its advanced motion algorithms that ensure smooth and precise movements, essential for high-quality manufacturing and assembly processes. The controller supports a variety of motor types, including servo, stepper, and brushless motors, making it compatible with a wide range of existing equipment.

In terms of connectivity, the DMC-3425 offers an extensive selection of communication options. It supports Ethernet, RS-232, and RS-485 interfaces, allowing for seamless integration with various industrial networks, including EtherCAT and CANopen. This connectivity is vital for real-time data exchange and remote monitoring, enhancing overall system efficiency.

The controller is powered by Galil's innovative software architecture, which includes the DMC programming language. This user-friendly language enables engineers to create complex motion profiles easily, with support for trajectory generation, coordinate transformations, and PID control. The DMC-3425 also features built-in commands for motion profiling, including linear and circular interpolation, allowing for sophisticated path planning.

Moreover, the DMC-3425 comes equipped with an integrated programming environment that facilitates rapid application development. Users can simulate motion profiles before implementation, reducing downtime and minimizing errors. This environment is designed for quick learning, making it accessible even for those new to motion control.

Additionally, the Galil DMC-3425 features a robust safety architecture. It includes over-temperature detection, emergency stop inputs, and configurable limits for position and speed, ensuring safe operation in various environments.

Overall, the Galil DMC-3425 is a powerful and flexible motion controller that combines advanced technologies with user-friendly design. Its ability to handle multiple axes, extensive connectivity options, and comprehensive programming environment make it a top choice for manufacturers seeking to enhance automation and improve productivity in their operations.