Chapter 3 Connecting Hardware

Overview

The DMC-3425 provides digital inputs for A and B forward limit, A and B reverse limit, A and B home input and abort input. The controller also has 3 uncommitted, TTL inputs, 3 TTL outputs and 2 analog inputs (12-bit).

The DMC-3415 provides a forward and reverse limit, home input and abort input. The controller also has 7 uncommitted, TTL inputs, 3 TTL outputs and 2 analog inputs (12-bit).

This chapter describes the inputs and outputs and their proper connection.

Using Inputs

Limit Switch Input

The forward limit switch (FLSx) inhibits motion in the forward direction immediately upon activation of the switch. The reverse limit switch (RLSx) inhibits motion in the reverse direction immediately upon activation of the switch. If a limit switch is activated during motion, the controller will make a decelerated stop using the deceleration rate previously set with the DC command. The motor will remain on (in a servo state) after the limit switch has been activated and will hold motor position. To set the activation state of the limit switches refer to the command CN, configure, in the Command Reference.

When a forward or reverse limit switch is activated, the current application program that is running will be interrupted and the controller will automatically jump to the #LIMSWI subroutine if one exists. This is a subroutine that the user can include in any motion control program and is useful for executing specific instructions upon activation of a limit switch.

After a limit switch has been activated, further motion in the direction of the limit switch will not be possible until the logic state of the switch returns back to an inactive state. This usually involves physically opening the tripped switch. Any attempt at further motion before the logic state has been reset will result in the following error: “022 - Begin not possible due to limit switch” error.

The operands, _LFx and _LRx, return the state of the forward and reverse limit switches, respectively (x represents the axis, A or B). The value of the operand is either a ‘0’ or ‘1’ corresponding to the logic state of the limit switch, active or inactive, respectively. If the limit switches are configured for active low, no connection or a 5V input will be read as a ‘0’, while grounding the switch will return a ‘1’. If the limit switches are configured for active high, the reading will be inverted and no connection or a 5V input will be read as a ‘1’, while grounding the switch will return a ‘0’.

Using a terminal program, the state of a limit switch can be printed to the screen with the command, MG _LFx or MG _LRx. This prints the value of the limit switch operands for the 'x' axis. The logic

DMC-3425

Chapter 3 Connecting Hardware37

Page 45
Image 45
Galil DMC-3425 user manual Overview, Using Inputs, Limit Switch Input

DMC-3425 specifications

The Galil DMC-3425 is a sophisticated motion controller known for its versatility and high performance in various industrial applications. Designed primarily for multi-axis control, it is well-suited for robotics, CNC machinery, and automated manufacturing systems.

One of the standout features of the DMC-3425 is its ability to control up to 32 axes simultaneously, providing unparalleled flexibility for complex motion tasks. This capability is enhanced by its advanced motion algorithms that ensure smooth and precise movements, essential for high-quality manufacturing and assembly processes. The controller supports a variety of motor types, including servo, stepper, and brushless motors, making it compatible with a wide range of existing equipment.

In terms of connectivity, the DMC-3425 offers an extensive selection of communication options. It supports Ethernet, RS-232, and RS-485 interfaces, allowing for seamless integration with various industrial networks, including EtherCAT and CANopen. This connectivity is vital for real-time data exchange and remote monitoring, enhancing overall system efficiency.

The controller is powered by Galil's innovative software architecture, which includes the DMC programming language. This user-friendly language enables engineers to create complex motion profiles easily, with support for trajectory generation, coordinate transformations, and PID control. The DMC-3425 also features built-in commands for motion profiling, including linear and circular interpolation, allowing for sophisticated path planning.

Moreover, the DMC-3425 comes equipped with an integrated programming environment that facilitates rapid application development. Users can simulate motion profiles before implementation, reducing downtime and minimizing errors. This environment is designed for quick learning, making it accessible even for those new to motion control.

Additionally, the Galil DMC-3425 features a robust safety architecture. It includes over-temperature detection, emergency stop inputs, and configurable limits for position and speed, ensuring safe operation in various environments.

Overall, the Galil DMC-3425 is a powerful and flexible motion controller that combines advanced technologies with user-friendly design. Its ability to handle multiple axes, extensive connectivity options, and comprehensive programming environment make it a top choice for manufacturers seeking to enhance automation and improve productivity in their operations.