Intel 5400 Series Processor Thermal Parameters and Features, Thermal Control Circuit and TDP

Page 19

Thermal/Mechanical Reference Design

A potential mechanical solution for heavy heatsinks is the direct attachment of the heatsink to the chassis pan. In this case, the strength of the chassis pan can be utilized rather than solely relying on the baseboard strength. In addition to the general guidelines given above, contact with the baseboard surfaces should be minimized during installation in order to avoid any damage to the baseboard.

The Intel reference design for Quad-Core Intel® Xeon® Processor 5400 Series is using such a heatsink attachment scheme. Refer to Section 2.5 for further information regarding the Intel reference mechanical solution.

2.2Processor Thermal Parameters and Features

2.2.1Thermal Control Circuit and TDP

The operating thermal limits of the processor are defined by the Thermal Profile. The intent of the Thermal Profile specification is to support acoustic noise reduction through fan speed control and ensure the long-term reliability of the processor. This specification requires that the temperature at the center of the processor IHS, known as (TCASE) remains within a certain temperature specification. For illustration, Figure 2-4shows the measurement location for the Quad-Core Intel® Xeon® Processor 5400 Series package. Compliance with the TCASE specification is required to achieve optimal operation and long-term reliability (See the Intel® Xeon® Dual- and Multi- Processor Family Thermal Test Vehicle User's Guide for Case Temperature definition and measurement methods).

Figure 2-4. Processor Case Temperature Measurement Location

To ease the burden on thermal solutions, the Thermal Monitor feature and associated logic have been integrated into the silicon of the processor. One feature of the Thermal Monitor is the Thermal Control Circuit (TCC). When active, the TCC lowers the processor temperature by reducing power consumption. This is accomplished through a combination of Thermal Monitor and Advanced Thermal Monitor (TM2). Thermal Monitor modulates the duty cycle of the internal processor clocks, resulting in a lower effective frequency. When active, the TCC turns the processor clocks off and then back on with a predetermined duty cycle. Thermal Monitor 2 activation adjusts both the

Quad-Core Intel® Xeon® Processor 5400 Series TMDG

19

Image 19
Contents Thermal/Mechanical Design Guidelines Quad-Core Intel Xeon Processor 5400 SeriesQuad-Core Intel Xeon Processor 5400 Series Tmdg Contents Figures Preload Test Configuration Tables Initial release of the document Reference Revision Description Date NumberQuad-Core Intel Xeon Processor 5400 Series Tmdg Scope ObjectiveReferences Terms and Descriptions Sheet 1 Definition of TermsTerm Description TDP Terms and Descriptions Sheet 2Introduction Parameter Minimum Maximum Unit Mechanical RequirementsProcessor Mechanical Parameters Processor Mechanical Parameters TableQuad-Core Intel Xeon Processor 5400 Series Package Thermal/Mechanical Reference Design Thermal/Mechanical Reference Design Thermal/Mechanical Reference Design Quad-Core Intel Xeon Processor 5400 Series Considerations Thermal Control Circuit and TDP Processor Thermal Parameters and FeaturesDigital Thermal Sensor Multiple Core Special Considerations Platform Environmental Control Interface PeciMultiple Digital Thermal Sensor Operation Processor Input Processor Output Thermal Monitor for Multiple Core ProductsPROCHOT#, THERMTRIP#, and FORCEPR# Heatpipe Orientation for Multiple Core ProcessorsFeature Dimension Processor Core Geometric Center DimensionsEquation 2-1.y = ax + b Thermal ProfileEquation 2-2.TCONTROL= -TOFFSET Tcontrol DefinitionTcontrol and Thermal Profile Interaction Thermal Profile B Performance Targets Thermal/Mechanical Reference Design Thermal/Mechanical Reference Design 2U+ CEK, Thermal Profile a Parameter Maximum Unit1U CEK, Thermal Profile B Sea-Level Fan Fail Guidelines1U Alternative Heatsink Fan Speed Control Characterizing Cooling Solution Performance RequirementsCondition FSC Scheme Processor Thermal Characterization Parameter RelationshipsFan Speed Control, Tcontrol and DTS Relationship Equation 2-3.ΨCA= Tcase TLA / TDPEquation 2-4.ΨCA= ΨCS + ΨSA ExampleEquation 2-6.ΨSA= ΨCA − ΨCS = 0.27 − 0.05 = 0.22 C/W Chassis Thermal Design ConsiderationsChassis Thermal Design Capabilities and Improvements Equation 2-5.ΨCA= Tcase TLA / TDP = 68 45 / 85 = 0.27 C/WThermal/Mechanical Reference Design Considerations Heatsink SolutionsHeatsink Design Considerations Summary Thermal Interface MaterialGeometric Envelope Assembly DrawingStructural Considerations of CEK 17 U+ CEK Heatsink Thermal Performance Thermal Solution Performance CharacteristicsEquation 2-8.y = 0.187*X + Thermal Profile AdherenceEquation 2-9.y = 0.246*X + =0.187* X +40Equation 2-10.y = 0.246*X + 1UCEKReference SolutionHeatsink with Captive Screws and Standoffs Components Overview22. Isometric View of the 2U+ CEK Heatsink Processor Minimum Maximum Units CEK Heatsink Thermal Mechanical CharacteristicsRecommended Thermal Grease Dispense Weight Thermal Interface Material TIM24. CEK Spring Isometric View CEK SpringThermal/Mechanical Reference Design Fan Specifications Boxed 4-wire PWM/DTS Heatsink Solution Fan Power SupplyDescription Min Typ Max Unit Steady Startup Systems Considerations Associated with the Active CEK Boxed Processor ContentsThermal/Mechanical Reference Design Figure A-1. Isometric View of the 1U Alternative Heatsink Component OverviewThermal Profile Adherence Thermal Solution Performance CharactericsEquation A-1. y = 0.331*x + = Processor power value W 1U Alternative Heatsink Thermal/Mechanical Design Drawing Description Table B-1. Mechanical Drawing ListFigure B-1 2U CEK Heatsink Sheet 1 Figure B-2 2U CEK Heatsink Sheet 2 Figure B-3 U CEK Heatsink Sheet 3 Figure B-4 2U CEK Heatsink Sheet 4 Figure B-5. CEK Spring Sheet 1 Figure B-6. CEK Spring Sheet 2 Figure B-7. CEK Spring Sheet 3 Mechanical Drawings Mechanical Drawings Mechanical Drawings Mechanical Drawings Mechanical Drawings Mechanical Drawings Figure B-14 U CEK Heatsink Sheet 1 Figure B-15 U CEK Heatsink Sheet 2 Figure B-16 U CEK Heatsink Sheet 3 Figure B-17 U CEK Heatsink Sheet 4 Figure B-18. Active CEK Thermal Solution Volumetric Sheet 1 Figure B-19. Active CEK Thermal Solution Volumetric Sheet 2 Figure B-20. Active CEK Thermal Solution Volumetric Sheet 3 Figure B-21 U Alternative Heatsink 1 Figure B-22 U Alternative Heatsink 2 Figure B-23 U Alternative Heatsink 3 Figure B-24 U Alternative Heatsink 4 Mechanical Drawings Test Preparation OverviewHeatsink Preparation Alternate Heatsink Sample Preparation Figure C-3. Preload Test Configuration Table C-1. Typical Test Equipment Test Procedure ExamplesTime-Zero, Room Temperature Preload Measurement Typical Test EquipmentPreload Degradation under Bake Conditions Heatsink Clip Load Methodology Safety Requirements Safety Requirements Reference Heatsink Thermal Verification Environmental Reliability TestingStructural Reliability Testing Intel Verification Criteria for the Reference DesignsPost-Test Pass Criteria 2.2 Recommended Test SequenceTable E-1 Use Conditions Environment Material and Recycling Requirements Recommended BIOS/Processor/Memory Test ProceduresQuality and Reliability Requirements Supplier Information Intel Enabled SuppliersFor 1U Additional Suppliers2U Heatsink Alternative CEK Copper Fin Alternative CEK Copper Fin Enabled Suppliers Information 100 Quad-Core Intel Xeon Processor 5400 Series Tmdg