Intel 5400 Series manual Material and Recycling Requirements

Page 93

Quality and Reliability Requirements

3.No signs of physical damage on baseboard surface due to impact of heatsink.

4.No visible physical damage to the processor package.

5.Successful BIOS/Processor/memory test of post-test samples.

6.Thermal compliance testing to demonstrate that the case temperature specification can be met.

E.1.2.4 Recommended BIOS/Processor/Memory Test Procedures

This test is to ensure proper operation of the product before and after environmental stresses, with the thermal mechanical enabling components assembled. The test shall be conducted on a fully operational baseboard that has not been exposed to any battery of tests prior to the test being considered.

Testing setup should include the following components, properly assembled and/or connected:

Appropriate system baseboard.

Processor and memory.

All enabling components, including socket and thermal solution parts.

The pass criterion is that the system under test shall successfully complete the checking of BIOS, basic processor functions and memory, without any errors. Intel PC Diags is an example of software that can be utilized for this test.

E.1.3 Material and Recycling Requirements

Material shall be resistant to fungal growth. Examples of non-resistant materials include cellulose materials, animal and vegetable based adhesives, grease, oils, and many hydrocarbons. Synthetic materials such as PVC formulations, certain polyurethane compositions (e.g. polyester and some polyethers), plastics which contain organic fillers of laminating materials, paints, and varnishes also are susceptible to fungal growth. If materials are not fungal growth resistant, then MIL-STD-810E, Method 508.4 must be performed to determine material performance.

Material used shall not have deformation or degradation in a temperature life test.

Any plastic component exceeding 25 grams should be recyclable per the European Blue Angel recycling standards.

The following definitions apply to the use of the terms lead-free, Pb-free, and RoHS compliant.

Lead-free and Pb-free:Lead has not been intentionally added, but lead may still exist as an impurity below 1000 ppm.

RoHS compliant: Lead and other materials banned in RoHS Directive are either (1) below all applicable substance thresholds as proposed by the EU or (2) an approved/ pending exemption applies.

Note: RoHS implementation details are not fully defined and may change.

§

Quad-Core Intel® Xeon® Processor 5400 Series TMDG

93

Image 93
Contents Thermal/Mechanical Design Guidelines Quad-Core Intel Xeon Processor 5400 SeriesQuad-Core Intel Xeon Processor 5400 Series Tmdg Contents Figures Preload Test Configuration Tables Initial release of the document Reference Revision Description Date NumberQuad-Core Intel Xeon Processor 5400 Series Tmdg Objective ScopeReferences Definition of Terms Terms and Descriptions Sheet 1Term Description TDP Terms and Descriptions Sheet 2Introduction Processor Mechanical Parameters Mechanical RequirementsProcessor Mechanical Parameters Table Parameter Minimum Maximum UnitQuad-Core Intel Xeon Processor 5400 Series Package Thermal/Mechanical Reference Design Thermal/Mechanical Reference Design Thermal/Mechanical Reference Design Quad-Core Intel Xeon Processor 5400 Series Considerations Thermal Control Circuit and TDP Processor Thermal Parameters and FeaturesDigital Thermal Sensor Platform Environmental Control Interface Peci Multiple Core Special ConsiderationsMultiple Digital Thermal Sensor Operation PROCHOT#, THERMTRIP#, and FORCEPR# Thermal Monitor for Multiple Core ProductsHeatpipe Orientation for Multiple Core Processors Processor Input Processor OutputFeature Dimension Processor Core Geometric Center DimensionsEquation 2-1.y = ax + b Thermal ProfileEquation 2-2.TCONTROL= -TOFFSET Tcontrol DefinitionTcontrol and Thermal Profile Interaction Thermal Profile B Performance Targets Thermal/Mechanical Reference Design Thermal/Mechanical Reference Design Parameter Maximum Unit 2U+ CEK, Thermal Profile a1U CEK, Thermal Profile B Fan Fail Guidelines Sea-Level1U Alternative Heatsink Fan Speed Control Characterizing Cooling Solution Performance RequirementsFan Speed Control, Tcontrol and DTS Relationship Processor Thermal Characterization Parameter RelationshipsEquation 2-3.ΨCA= Tcase TLA / TDP Condition FSC SchemeEquation 2-4.ΨCA= ΨCS + ΨSA ExampleChassis Thermal Design Capabilities and Improvements Chassis Thermal Design ConsiderationsEquation 2-5.ΨCA= Tcase TLA / TDP = 68 45 / 85 = 0.27 C/W Equation 2-6.ΨSA= ΨCA − ΨCS = 0.27 − 0.05 = 0.22 C/WHeatsink Solutions Thermal/Mechanical Reference Design ConsiderationsHeatsink Design Considerations Summary Thermal Interface MaterialGeometric Envelope Assembly DrawingStructural Considerations of CEK 17 U+ CEK Heatsink Thermal Performance Thermal Solution Performance CharacteristicsEquation 2-8.y = 0.187*X + Thermal Profile AdherenceEquation 2-9.y = 0.246*X + =0.187* X +40Equation 2-10.y = 0.246*X + 1UCEKReference SolutionHeatsink with Captive Screws and Standoffs Components Overview22. Isometric View of the 2U+ CEK Heatsink Recommended Thermal Grease Dispense Weight CEK Heatsink Thermal Mechanical CharacteristicsThermal Interface Material TIM Processor Minimum Maximum Units24. CEK Spring Isometric View CEK SpringThermal/Mechanical Reference Design Fan Power Supply Fan Specifications Boxed 4-wire PWM/DTS Heatsink SolutionDescription Min Typ Max Unit Steady Startup Systems Considerations Associated with the Active CEK Boxed Processor ContentsThermal/Mechanical Reference Design Figure A-1. Isometric View of the 1U Alternative Heatsink Component OverviewThermal Solution Performance Characterics Thermal Profile AdherenceEquation A-1. y = 0.331*x + = Processor power value W 1U Alternative Heatsink Thermal/Mechanical Design Drawing Description Table B-1. Mechanical Drawing ListFigure B-1 2U CEK Heatsink Sheet 1 Figure B-2 2U CEK Heatsink Sheet 2 Figure B-3 U CEK Heatsink Sheet 3 Figure B-4 2U CEK Heatsink Sheet 4 Figure B-5. CEK Spring Sheet 1 Figure B-6. CEK Spring Sheet 2 Figure B-7. CEK Spring Sheet 3 Mechanical Drawings Mechanical Drawings Mechanical Drawings Mechanical Drawings Mechanical Drawings Mechanical Drawings Figure B-14 U CEK Heatsink Sheet 1 Figure B-15 U CEK Heatsink Sheet 2 Figure B-16 U CEK Heatsink Sheet 3 Figure B-17 U CEK Heatsink Sheet 4 Figure B-18. Active CEK Thermal Solution Volumetric Sheet 1 Figure B-19. Active CEK Thermal Solution Volumetric Sheet 2 Figure B-20. Active CEK Thermal Solution Volumetric Sheet 3 Figure B-21 U Alternative Heatsink 1 Figure B-22 U Alternative Heatsink 2 Figure B-23 U Alternative Heatsink 3 Figure B-24 U Alternative Heatsink 4 Mechanical Drawings Overview Test PreparationHeatsink Preparation Alternate Heatsink Sample Preparation Figure C-3. Preload Test Configuration Time-Zero, Room Temperature Preload Measurement Test Procedure ExamplesTypical Test Equipment Table C-1. Typical Test EquipmentPreload Degradation under Bake Conditions Heatsink Clip Load Methodology Safety Requirements Safety Requirements Structural Reliability Testing Environmental Reliability TestingIntel Verification Criteria for the Reference Designs Reference Heatsink Thermal Verification2.2 Recommended Test Sequence Post-Test Pass CriteriaTable E-1 Use Conditions Environment Material and Recycling Requirements Recommended BIOS/Processor/Memory Test ProceduresQuality and Reliability Requirements Supplier Information Intel Enabled SuppliersFor 1U Additional Suppliers2U Heatsink Alternative CEK Copper Fin Alternative CEK Copper Fin Enabled Suppliers Information 100 Quad-Core Intel Xeon Processor 5400 Series Tmdg