Intel 5400 Series manual Structural Considerations of CEK

Page 40

Thermal/Mechanical Reference Design

The CEK reference thermal solution is designed to extend air-cooling capability through the use of larger heatsinks with minimal airflow blockage and bypass. CEK retention solution can allow the use of much heavier heatsink masses compared to the legacy limits by using a load path directly attached to the chassis pan. The CEK spring on the secondary side of the baseboard provides the necessary compressive load for the thermal interface material. The baseboard is intended to be isolated such that the dynamic loads from the heatsink are transferred to the chassis pan via the stiff screws and standoffs. This reduces the risk of package pullout and solder-joint failures.

Using the CEK reference thermal solution, Intel recommends that the maximum outside diameter dimension of the chassis pan standoffs, regardless of shape, that interfaces with the CEK spring on the secondary side of the baseboard and captive screws on the primary side of the baseboard to attach the heatsink to the chassis pan should be no larger than 7.112 mm [0.28 in.]. For example, circular standoffs should be no larger than 7.112 mm [0.28 in.] point-to-point.

The baseboard mounting holes for the CEK solution are at the same location as the hole locations used for previous Intel® Xeon® processor thermal solution. However, CEK assembly requires 10.16 mm [0.400 in.] large diameter holes to compensate for the CEK spring embosses.

The CEK solution is designed and optimized for a baseboard thickness range of 1.57 –

2.31mm [0.062-0.093 in]. While the same CEK spring can be used for this board thickness range, the heatsink standoff height is different for a 1.57 mm [0.062 in] thick board than it is for a 2.31 mm [0.093 in] thick board. In the heatsink assembly, the standoff protrusion from the base of the heatsink needs to be 0.6 mm [0.024 in] longer for a 2.31 mm [0.093 in] thick board, compared to a 1.57 mm [0.062 in] thick board. If this solution is intended to be used on baseboards that fall outside of this range, then some aspects of the design, including but not limited to the CEK spring design and the standoff heights, may need to change. Therefore, system designers need to evaluate the thermal performance and mechanical behavior of the CEK design on baseboards with different thicknesses.

Refer to Appendix B for drawings of the heatsinks and CEK spring. The screws and standoffs are standard components that are made captive to the heatsink for ease of handling and assembly.

Contact your Intel field sales representative for an electronic version of mechanical and thermal models of the CEK (Pro/Engineer*, IGES and Icepak*, Flotherm* formats). Pro/Engineer, Icepak and Flotherm models are available on Intel Business Link (IBL).

Note: Intel reserves the right to make changes and modifications to the design as necessary.

Note: The thermal mechanical reference design for the Quad-Core Intel® Xeon® Processor 5400 Series was verified according to the Intel validation criteria given in Appendix E.1. Any thermal mechanical design using some of the reference components in combination with any other thermal mechanical solution needs to be fully validated according to the customer criteria. Also, if customer thermal mechanical validation criteria differ from the Intel criteria, the reference solution should be validated against the customer criteria.

2.5.4.3Structural Considerations of CEK

As Intel explores methods of keeping thermal solutions within the air-cooling space, the mass of the thermal solutions is increasing. Due to the flexible nature (and associated large deformation) of baseboard-only attachments, Intel reference solutions, such as

40

Quad-Core Intel® Xeon® Processor 5400 Series TMDG

Image 40
Contents Quad-Core Intel Xeon Processor 5400 Series Thermal/Mechanical Design GuidelinesQuad-Core Intel Xeon Processor 5400 Series Tmdg Contents Figures Preload Test Configuration Tables Reference Revision Description Date Number Initial release of the documentQuad-Core Intel Xeon Processor 5400 Series Tmdg Scope ObjectiveReferences Terms and Descriptions Sheet 1 Definition of TermsTerm Description Terms and Descriptions Sheet 2 TDPIntroduction Mechanical Requirements Processor Mechanical ParametersProcessor Mechanical Parameters Table Parameter Minimum Maximum UnitQuad-Core Intel Xeon Processor 5400 Series Package Thermal/Mechanical Reference Design Thermal/Mechanical Reference Design Thermal/Mechanical Reference Design Quad-Core Intel Xeon Processor 5400 Series Considerations Processor Thermal Parameters and Features Thermal Control Circuit and TDPDigital Thermal Sensor Multiple Core Special Considerations Platform Environmental Control Interface PeciMultiple Digital Thermal Sensor Operation Thermal Monitor for Multiple Core Products PROCHOT#, THERMTRIP#, and FORCEPR#Heatpipe Orientation for Multiple Core Processors Processor Input Processor OutputProcessor Core Geometric Center Dimensions Feature DimensionThermal Profile Equation 2-1.y = ax + bTcontrol Definition Equation 2-2.TCONTROL= -TOFFSETTcontrol and Thermal Profile Interaction Thermal Profile B Performance Targets Thermal/Mechanical Reference Design Thermal/Mechanical Reference Design 2U+ CEK, Thermal Profile a Parameter Maximum Unit1U CEK, Thermal Profile B Sea-Level Fan Fail Guidelines1U Alternative Heatsink Characterizing Cooling Solution Performance Requirements Fan Speed ControlProcessor Thermal Characterization Parameter Relationships Fan Speed Control, Tcontrol and DTS RelationshipEquation 2-3.ΨCA= Tcase TLA / TDP Condition FSC SchemeExample Equation 2-4.ΨCA= ΨCS + ΨSAChassis Thermal Design Considerations Chassis Thermal Design Capabilities and ImprovementsEquation 2-5.ΨCA= Tcase TLA / TDP = 68 45 / 85 = 0.27 C/W Equation 2-6.ΨSA= ΨCA − ΨCS = 0.27 − 0.05 = 0.22 C/WThermal/Mechanical Reference Design Considerations Heatsink SolutionsHeatsink Design Considerations Thermal Interface Material SummaryAssembly Drawing Geometric EnvelopeStructural Considerations of CEK Thermal Solution Performance Characteristics 17 U+ CEK Heatsink Thermal PerformanceThermal Profile Adherence Equation 2-8.y = 0.187*X +=0.187* X +40 Equation 2-9.y = 0.246*X +1UCEKReference Solution Equation 2-10.y = 0.246*X +Components Overview Heatsink with Captive Screws and Standoffs22. Isometric View of the 2U+ CEK Heatsink CEK Heatsink Thermal Mechanical Characteristics Recommended Thermal Grease Dispense WeightThermal Interface Material TIM Processor Minimum Maximum UnitsCEK Spring 24. CEK Spring Isometric ViewThermal/Mechanical Reference Design Fan Specifications Boxed 4-wire PWM/DTS Heatsink Solution Fan Power SupplyDescription Min Typ Max Unit Steady Startup Boxed Processor Contents Systems Considerations Associated with the Active CEKThermal/Mechanical Reference Design Component Overview Figure A-1. Isometric View of the 1U Alternative HeatsinkThermal Profile Adherence Thermal Solution Performance CharactericsEquation A-1. y = 0.331*x + = Processor power value W 1U Alternative Heatsink Thermal/Mechanical Design Table B-1. Mechanical Drawing List Drawing DescriptionFigure B-1 2U CEK Heatsink Sheet 1 Figure B-2 2U CEK Heatsink Sheet 2 Figure B-3 U CEK Heatsink Sheet 3 Figure B-4 2U CEK Heatsink Sheet 4 Figure B-5. CEK Spring Sheet 1 Figure B-6. CEK Spring Sheet 2 Figure B-7. CEK Spring Sheet 3 Mechanical Drawings Mechanical Drawings Mechanical Drawings Mechanical Drawings Mechanical Drawings Mechanical Drawings Figure B-14 U CEK Heatsink Sheet 1 Figure B-15 U CEK Heatsink Sheet 2 Figure B-16 U CEK Heatsink Sheet 3 Figure B-17 U CEK Heatsink Sheet 4 Figure B-18. Active CEK Thermal Solution Volumetric Sheet 1 Figure B-19. Active CEK Thermal Solution Volumetric Sheet 2 Figure B-20. Active CEK Thermal Solution Volumetric Sheet 3 Figure B-21 U Alternative Heatsink 1 Figure B-22 U Alternative Heatsink 2 Figure B-23 U Alternative Heatsink 3 Figure B-24 U Alternative Heatsink 4 Mechanical Drawings Test Preparation OverviewHeatsink Preparation Alternate Heatsink Sample Preparation Figure C-3. Preload Test Configuration Test Procedure Examples Time-Zero, Room Temperature Preload MeasurementTypical Test Equipment Table C-1. Typical Test EquipmentPreload Degradation under Bake Conditions Heatsink Clip Load Methodology Safety Requirements Safety Requirements Environmental Reliability Testing Structural Reliability TestingIntel Verification Criteria for the Reference Designs Reference Heatsink Thermal VerificationPost-Test Pass Criteria 2.2 Recommended Test SequenceTable E-1 Use Conditions Environment Recommended BIOS/Processor/Memory Test Procedures Material and Recycling RequirementsQuality and Reliability Requirements Intel Enabled Suppliers Supplier InformationAdditional Suppliers For 1U2U Heatsink Alternative CEK Copper Fin Alternative CEK Copper Fin Enabled Suppliers Information 100 Quad-Core Intel Xeon Processor 5400 Series Tmdg