Intel 5400 Series Fan Power Supply, Fan Specifications Boxed 4-wire PWM/DTS Heatsink Solution

Page 50

Thermal/Mechanical Reference Design

Clearance is required around the heatsink to ensure unimpeded airflow for proper cooling. The physical baseboard keepout requirements for the active solution are the same as the passive CEK solution shown in Appendix B. Refer to Figure B-18through Figure B-20for additional details on the active CEK thermal solution volumetrics.

2.5.8.1Fan Power Supply

The active heatsink includes a fan, which requires a +12 V power supply. Platforms must provide a matched fan power header to support the boxed processor. Table 2-9contains specifications for the input and output signals at the heatsink fan connector.

The fan outputs a SENSE signal, an open-collector output, which pulses at a rate of two pulses per fan revolution. A baseboard pull-up resistor provides VCC to match the baseboard-mounted fan speed monitor requirements, if applicable. Use of the SENSE signal is optional. If the SENSE signal is not used, pin 3 of the connector should be tied to GND.

It is recommended that a 4 pin fan header be used on the baseboard, in addition to, a control ASIC that can send a PWM signal to the active fan heatsink solution on the 4th pin, at a nominal 25 KHz frequency. If a 3-pin CPU fan header is used instead, the active fan heatsink solution will revert back to an automatic ambient air temperature control mode.

The fan power header on the baseboard must be positioned to allow the fan heatsink power cable to reach it. The fan power header identification and location must be documented in the supplier’s platform documentation, or on the baseboard itself. The baseboard fan power header should be positioned within 177.8 mm [7 in.] from the center of the processor socket.

Table 2-9. Fan Specifications (Boxed 4-wire PWM/DTS Heatsink Solution)

Description

Min

Typ

Max

Max

Unit

Notes

Steady

Steady

Startup

 

 

 

 

 

 

 

 

 

 

 

+12V: 12 Volt Fan Power

10.8

12

12

13.2

V

 

Supply

 

 

 

 

 

 

 

 

 

 

 

 

 

IC: Fan Current Draw

N/A

1.25

1.5

1.5

A

 

 

 

 

 

 

 

 

SENSE: SENSE Frequency

2

2

2

2

Pulses per fan revolution

1

 

 

 

 

 

 

 

Note: System board should pull this pin up to VCC with a resistor.

Figure 2-27. Fan Cable Connection (Active CEK)

50

Quad-Core Intel® Xeon® Processor 5400 Series TMDG

Image 50
Contents Quad-Core Intel Xeon Processor 5400 Series Thermal/Mechanical Design GuidelinesQuad-Core Intel Xeon Processor 5400 Series Tmdg Contents Figures Preload Test Configuration Tables Reference Revision Description Date Number Initial release of the documentQuad-Core Intel Xeon Processor 5400 Series Tmdg References ObjectiveScope Term Description Definition of TermsTerms and Descriptions Sheet 1 Terms and Descriptions Sheet 2 TDPIntroduction Processor Mechanical Parameters Table Mechanical RequirementsProcessor Mechanical Parameters Parameter Minimum Maximum UnitQuad-Core Intel Xeon Processor 5400 Series Package Thermal/Mechanical Reference Design Thermal/Mechanical Reference Design Thermal/Mechanical Reference Design Quad-Core Intel Xeon Processor 5400 Series Considerations Processor Thermal Parameters and Features Thermal Control Circuit and TDPDigital Thermal Sensor Multiple Digital Thermal Sensor Operation Platform Environmental Control Interface PeciMultiple Core Special Considerations Heatpipe Orientation for Multiple Core Processors Thermal Monitor for Multiple Core ProductsPROCHOT#, THERMTRIP#, and FORCEPR# Processor Input Processor OutputProcessor Core Geometric Center Dimensions Feature DimensionThermal Profile Equation 2-1.y = ax + bTcontrol Definition Equation 2-2.TCONTROL= -TOFFSETTcontrol and Thermal Profile Interaction Thermal Profile B Performance Targets Thermal/Mechanical Reference Design Thermal/Mechanical Reference Design 1U CEK, Thermal Profile B Parameter Maximum Unit2U+ CEK, Thermal Profile a 1U Alternative Heatsink Fan Fail GuidelinesSea-Level Characterizing Cooling Solution Performance Requirements Fan Speed ControlEquation 2-3.ΨCA= Tcase TLA / TDP Processor Thermal Characterization Parameter RelationshipsFan Speed Control, Tcontrol and DTS Relationship Condition FSC SchemeExample Equation 2-4.ΨCA= ΨCS + ΨSAEquation 2-5.ΨCA= Tcase TLA / TDP = 68 45 / 85 = 0.27 C/W Chassis Thermal Design ConsiderationsChassis Thermal Design Capabilities and Improvements Equation 2-6.ΨSA= ΨCA − ΨCS = 0.27 − 0.05 = 0.22 C/WHeatsink Design Considerations Heatsink SolutionsThermal/Mechanical Reference Design Considerations Thermal Interface Material SummaryAssembly Drawing Geometric EnvelopeStructural Considerations of CEK Thermal Solution Performance Characteristics 17 U+ CEK Heatsink Thermal PerformanceThermal Profile Adherence Equation 2-8.y = 0.187*X +=0.187* X +40 Equation 2-9.y = 0.246*X +1UCEKReference Solution Equation 2-10.y = 0.246*X +Components Overview Heatsink with Captive Screws and Standoffs22. Isometric View of the 2U+ CEK Heatsink Thermal Interface Material TIM CEK Heatsink Thermal Mechanical CharacteristicsRecommended Thermal Grease Dispense Weight Processor Minimum Maximum UnitsCEK Spring 24. CEK Spring Isometric ViewThermal/Mechanical Reference Design Description Min Typ Max Unit Steady Startup Fan Power SupplyFan Specifications Boxed 4-wire PWM/DTS Heatsink Solution Boxed Processor Contents Systems Considerations Associated with the Active CEKThermal/Mechanical Reference Design Component Overview Figure A-1. Isometric View of the 1U Alternative HeatsinkEquation A-1. y = 0.331*x + Thermal Solution Performance CharactericsThermal Profile Adherence = Processor power value W 1U Alternative Heatsink Thermal/Mechanical Design Table B-1. Mechanical Drawing List Drawing DescriptionFigure B-1 2U CEK Heatsink Sheet 1 Figure B-2 2U CEK Heatsink Sheet 2 Figure B-3 U CEK Heatsink Sheet 3 Figure B-4 2U CEK Heatsink Sheet 4 Figure B-5. CEK Spring Sheet 1 Figure B-6. CEK Spring Sheet 2 Figure B-7. CEK Spring Sheet 3 Mechanical Drawings Mechanical Drawings Mechanical Drawings Mechanical Drawings Mechanical Drawings Mechanical Drawings Figure B-14 U CEK Heatsink Sheet 1 Figure B-15 U CEK Heatsink Sheet 2 Figure B-16 U CEK Heatsink Sheet 3 Figure B-17 U CEK Heatsink Sheet 4 Figure B-18. Active CEK Thermal Solution Volumetric Sheet 1 Figure B-19. Active CEK Thermal Solution Volumetric Sheet 2 Figure B-20. Active CEK Thermal Solution Volumetric Sheet 3 Figure B-21 U Alternative Heatsink 1 Figure B-22 U Alternative Heatsink 2 Figure B-23 U Alternative Heatsink 3 Figure B-24 U Alternative Heatsink 4 Mechanical Drawings Heatsink Preparation OverviewTest Preparation Alternate Heatsink Sample Preparation Figure C-3. Preload Test Configuration Typical Test Equipment Test Procedure ExamplesTime-Zero, Room Temperature Preload Measurement Table C-1. Typical Test EquipmentPreload Degradation under Bake Conditions Heatsink Clip Load Methodology Safety Requirements Safety Requirements Intel Verification Criteria for the Reference Designs Environmental Reliability TestingStructural Reliability Testing Reference Heatsink Thermal VerificationTable E-1 Use Conditions Environment 2.2 Recommended Test SequencePost-Test Pass Criteria Recommended BIOS/Processor/Memory Test Procedures Material and Recycling RequirementsQuality and Reliability Requirements Intel Enabled Suppliers Supplier InformationAdditional Suppliers For 1U2U Heatsink Alternative CEK Copper Fin Alternative CEK Copper Fin Enabled Suppliers Information 100 Quad-Core Intel Xeon Processor 5400 Series Tmdg