Intel 5400 Series manual Thermal Profile B

Page 27

Thermal/Mechanical Reference Design

Figure 2-10. Dual Thermal Profile Diagram

T

T

case_max_B

case_max_A

Thermal Profile B

Thermal Profile A

PowerTDP

The Thermal Profile A is based on Intel’s 2U+ air cooling solution. Designing to Thermal Profile A ensures that no measurable performance loss due to Thermal Control Circuit (TCC) activation is observed in the processor. It is expected that TCC would only be activated for very brief periods of time when running a worst-case real world application in a worst-case thermal condition. These brief instances of TCC activation are not expected to impact the performance of the processor. A worst case real world application is defined as a commercially available, useful application which dissipates a power equal to, or above, the TDP for a thermally relevant timeframe. One example of a worst-case thermal condition is when a processor local ambient temperature is at or above 42.8°C for Quad-Core Intel® Xeon® Processor X5400 Series Thermal Profile A.

Thermal Profile B supports volumetrically constrained platforms (i.e. 1U, blades, etc.), and is based on Intel’s 1U air cooling solution. Because of the reduced capability represented by such thermal solutions, designing to Thermal Profile B results in an increased probability of TCC activation and an associated measurable performance loss. Measurable performance loss is defined to be any degradation in the processor’s performance greater than 1.5%. The 1.5% number is chosen as the baseline since the run-to-run variation in a given performance benchmark is typically between 1 and 2%.

Although designing to Thermal Profile B results in increased TCASE temperatures compared to Thermal Profile A at a given power level, both of these Thermal Profiles ensure that Intel’s long-term processor reliability requirements are satisfied. In other words, designing to Thermal Profile B does not impose any additional risk to Intel’s long-term reliability requirements. Thermal solutions that exceed Thermal Profile B specification are considered incompliant and will adversely affect the long-term reliability of the processor.

Quad-Core Intel® Xeon® Processor 5400 Series TMDG

27

Image 27
Contents Thermal/Mechanical Design Guidelines Quad-Core Intel Xeon Processor 5400 SeriesQuad-Core Intel Xeon Processor 5400 Series Tmdg Contents Figures Preload Test Configuration Tables Initial release of the document Reference Revision Description Date NumberQuad-Core Intel Xeon Processor 5400 Series Tmdg Objective ScopeReferences Definition of Terms Terms and Descriptions Sheet 1Term Description TDP Terms and Descriptions Sheet 2Introduction Parameter Minimum Maximum Unit Mechanical RequirementsProcessor Mechanical Parameters Processor Mechanical Parameters TableQuad-Core Intel Xeon Processor 5400 Series Package Thermal/Mechanical Reference Design Thermal/Mechanical Reference Design Thermal/Mechanical Reference Design Quad-Core Intel Xeon Processor 5400 Series Considerations Thermal Control Circuit and TDP Processor Thermal Parameters and FeaturesDigital Thermal Sensor Platform Environmental Control Interface Peci Multiple Core Special ConsiderationsMultiple Digital Thermal Sensor Operation Processor Input Processor Output Thermal Monitor for Multiple Core ProductsPROCHOT#, THERMTRIP#, and FORCEPR# Heatpipe Orientation for Multiple Core ProcessorsFeature Dimension Processor Core Geometric Center DimensionsEquation 2-1.y = ax + b Thermal ProfileEquation 2-2.TCONTROL= -TOFFSET Tcontrol DefinitionTcontrol and Thermal Profile Interaction Thermal Profile B Performance Targets Thermal/Mechanical Reference Design Thermal/Mechanical Reference Design Parameter Maximum Unit 2U+ CEK, Thermal Profile a1U CEK, Thermal Profile B Fan Fail Guidelines Sea-Level1U Alternative Heatsink Fan Speed Control Characterizing Cooling Solution Performance RequirementsCondition FSC Scheme Processor Thermal Characterization Parameter RelationshipsFan Speed Control, Tcontrol and DTS Relationship Equation 2-3.ΨCA= Tcase TLA / TDPEquation 2-4.ΨCA= ΨCS + ΨSA ExampleEquation 2-6.ΨSA= ΨCA − ΨCS = 0.27 − 0.05 = 0.22 C/W Chassis Thermal Design ConsiderationsChassis Thermal Design Capabilities and Improvements Equation 2-5.ΨCA= Tcase TLA / TDP = 68 45 / 85 = 0.27 C/WHeatsink Solutions Thermal/Mechanical Reference Design ConsiderationsHeatsink Design Considerations Summary Thermal Interface MaterialGeometric Envelope Assembly DrawingStructural Considerations of CEK 17 U+ CEK Heatsink Thermal Performance Thermal Solution Performance CharacteristicsEquation 2-8.y = 0.187*X + Thermal Profile AdherenceEquation 2-9.y = 0.246*X + =0.187* X +40Equation 2-10.y = 0.246*X + 1UCEKReference SolutionHeatsink with Captive Screws and Standoffs Components Overview22. Isometric View of the 2U+ CEK Heatsink Processor Minimum Maximum Units CEK Heatsink Thermal Mechanical CharacteristicsRecommended Thermal Grease Dispense Weight Thermal Interface Material TIM24. CEK Spring Isometric View CEK SpringThermal/Mechanical Reference Design Fan Power Supply Fan Specifications Boxed 4-wire PWM/DTS Heatsink SolutionDescription Min Typ Max Unit Steady Startup Systems Considerations Associated with the Active CEK Boxed Processor ContentsThermal/Mechanical Reference Design Figure A-1. Isometric View of the 1U Alternative Heatsink Component OverviewThermal Solution Performance Characterics Thermal Profile AdherenceEquation A-1. y = 0.331*x + = Processor power value W 1U Alternative Heatsink Thermal/Mechanical Design Drawing Description Table B-1. Mechanical Drawing ListFigure B-1 2U CEK Heatsink Sheet 1 Figure B-2 2U CEK Heatsink Sheet 2 Figure B-3 U CEK Heatsink Sheet 3 Figure B-4 2U CEK Heatsink Sheet 4 Figure B-5. CEK Spring Sheet 1 Figure B-6. CEK Spring Sheet 2 Figure B-7. CEK Spring Sheet 3 Mechanical Drawings Mechanical Drawings Mechanical Drawings Mechanical Drawings Mechanical Drawings Mechanical Drawings Figure B-14 U CEK Heatsink Sheet 1 Figure B-15 U CEK Heatsink Sheet 2 Figure B-16 U CEK Heatsink Sheet 3 Figure B-17 U CEK Heatsink Sheet 4 Figure B-18. Active CEK Thermal Solution Volumetric Sheet 1 Figure B-19. Active CEK Thermal Solution Volumetric Sheet 2 Figure B-20. Active CEK Thermal Solution Volumetric Sheet 3 Figure B-21 U Alternative Heatsink 1 Figure B-22 U Alternative Heatsink 2 Figure B-23 U Alternative Heatsink 3 Figure B-24 U Alternative Heatsink 4 Mechanical Drawings Overview Test PreparationHeatsink Preparation Alternate Heatsink Sample Preparation Figure C-3. Preload Test Configuration Table C-1. Typical Test Equipment Test Procedure ExamplesTime-Zero, Room Temperature Preload Measurement Typical Test EquipmentPreload Degradation under Bake Conditions Heatsink Clip Load Methodology Safety Requirements Safety Requirements Reference Heatsink Thermal Verification Environmental Reliability TestingStructural Reliability Testing Intel Verification Criteria for the Reference Designs2.2 Recommended Test Sequence Post-Test Pass CriteriaTable E-1 Use Conditions Environment Material and Recycling Requirements Recommended BIOS/Processor/Memory Test ProceduresQuality and Reliability Requirements Supplier Information Intel Enabled SuppliersFor 1U Additional Suppliers2U Heatsink Alternative CEK Copper Fin Alternative CEK Copper Fin Enabled Suppliers Information 100 Quad-Core Intel Xeon Processor 5400 Series Tmdg