Motherboard Layout and Routing Guidelines

Figure 2-4. Four Layer Board Stack-up

Z = 60 ohms

Z = 60 ohms

Primary Signal Layer (1/2 oz. cu.)

 

 

 

 

5 mils

 

 

 

 

 

 

 

 

PREPREG

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ground Plane (1 oz. cu.)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

47 mils

 

 

 

 

 

 

 

 

 

CORE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Power Plane (1 oz. cu)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 mils

 

 

 

 

 

 

 

 

PREPREG

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Secondary Signal Layer (1/2 oz. cu)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Total board thickness = 62.6

Note: The top and bottom routing layers specify 1/2 oz. cu. However, by the time the board is plated, the traces will end about 1 oz. cu. Check with your fabrication vendor on the exact value and insure that any signal simulation accounts for this value.

Note: A thicker core may help reduce board warpage issues.

For a dual processor / Intel® 440GX AGPset design, a 6 layer stack-up is recommended. Two examples are shown below. Figure 2-5has 4 signal plane layers and 2 power plane layers.

Figure 2-6shows 3 signal plane layers and 3 power plane layers. The second option makes it easier to accommodate all of the power planes required in a Intel® 440GX AGPset design.

If a 6 layer stack-up is used, then it is recommended to route most of the GTL+ bus signals on the inner layers. The primary and secondary signal layer can be used for GTL+ signals where needed. Routes on the two inner layers should be orthogonal to reduce crosstalk between the layers.

Figure 2-5. Six Layer Board Stack-up With 4 Signal Planes and 2 Power Planes

Z = 66 ohms

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Primary Signal Layer (1/2 oz. cu.)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 mils

 

 

 

 

 

 

 

 

PREPREG

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ground Plane (1 oz. cu.)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

18 mils

 

 

 

 

 

 

 

 

 

CORE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Z = 73 ohms

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inner Layer #1 (1 oz. cu.)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 mils

 

 

 

 

 

 

 

 

PREPREG

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inner Layer #2 (1 oz. cu)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

18 mils

 

 

 

 

 

 

 

 

 

CORE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Power Plane (1 oz. cu)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 mils

 

 

 

 

 

 

 

 

PREPREG

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Z = 66 ohms

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Secondary Signal Layer (1/2 oz. cu)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Total board thickness = 62.4

2-4

Intel®440GX AGPset Design Guide

Page 28
Image 28
Intel 440GX manual Four Layer Board Stack-up

440GX specifications

The Intel 440GX chipset was launched in 1997 as part of Intel's series of chipsets known as the 440 family, and it served as a critical component for various Pentium II and Pentium III-based motherboard architectures. Specifically designed for the second generation of Intel’s processors, the 440GX delivered enhanced performance and supported a range of important technologies that defined PC architectures of its time.

One of the main features of the Intel 440GX was its support for a 100 MHz front-side bus (FSB), which significantly improved data transfer rates between the CPU and the memory subsystem. This advancement allowed the 440GX to accommodate both the original Pentium II processors as well as the later Pentium III chips, providing compatibility and flexibility for system builders and consumers alike.

The 440GX chipset included an integrated AGP (Accelerated Graphics Port) controller, which supported AGP 2x speeds. This enabled high-performance graphics cards to be utilized effectively, delivering many enhanced graphics capabilities for gaming and multimedia applications. The AGP interface was crucial at the time as it offered a dedicated pathway for graphics data, increasing bandwidth compared to traditional PCI slots.

In terms of memory support, the 440GX could address up to 512 MB of SDRAM, allowing systems built with this chipset to run comfortably with sufficient memory for the era’s demanding applications. The memory controller was capable of supporting both single and double-sided DIMMs, which provided versatility in memory configuration for system builders.

Another notable feature of the Intel 440GX was its support for multi-processor configurations through its Dual Processors support feature. This allowed enterprise and workstation computers to leverage the performance advantages of multiple CPUs, making the chipset suitable for business and professional environments where multitasking and high-performance computing were essential.

On the connectivity front, the chipset supported up to six PCI slots, enhancing peripheral device integration and expansion capabilities. It also included integrated IDE controllers, facilitating connections for hard drives and CD-ROM devices.

Overall, the Intel 440GX chipset represented a balanced combination of performance, flexibility, and technology advancements for its time. Its introduction helped establish a foundation for subsequent advancements in PC technology and set the stage for more powerful computing systems in the years to come.