Custom bindings

Custom bindings

A distinction is made between FSCP and mechanical system control in this section. While smoke control panel processing is predictable, mechanical system processing (actuators, feedback validation) is unknown. It is limited to approximately five smoke control zones based on the UUKL-approved smoke control panel. Because the number and application of each MP581 and EX2 modules is unknown, the mechanical system will be represented as a “cloud.”

The recommended smoke control system design is to have one MP580/581 assigned as the “communication clearing house” or hub. It may be necessary to use two or more hubs, one for panel control and another hub(s) for the mechanical system. This design will simplify the binding creation process and makes the system more scalable. For more information regarding the limitations placed on custom binding and recommendations regarding custom binding design, see “Understanding bindings” on page 130.

The bindings and variables shown in Table 31–Table 37 were those used in the tested UUKL system to send information between MP580s. The system programmer can use whatever bindings and variables are necessary.

UUKL binding list (watchdog communication)

“Trouble signals and their restoration to normal shall be annunciated within 200 seconds of the occurrence of the adverse condition, fault, or the restoration to normal.” (UL-864: 49.2.b)

As there is no built in means of verifying inter-MP581 communication status, a programmed solution must be used. While a network variable “heartbeat” can be used to verify status, it can take up to 300 seconds for a communication failure to be noticed. This solution would fail to meet the requirement given in previous paragraph. The tested solution is based on a “watchdog” style where a continuously changing network variable triggers a timer every time it changes state. As long as the timer never expires, it is assumed that the two devices are communicating. In this fashion, a communication failure can be annunciated within 60 seconds.

Table 31 on page 124 shows an example of a custom binding list. One group binding binds MP580-2, which is the hub, to all other MP581s (for an explanation of group bindings, see “Understanding bindings” on page 130). The “watchdog” signal sent to the group is used by each receiver to confirm communications from the hub unit. The hub unit is able to validate communications from each of other MP581s using their individual “watchdog” signals. These bindings are point-to-point based. There may be two hubs in the system, one used with the FSCP and other within the mechanical system. The need for a second hub will be driven by the size of the mechanical system involved. Figure 71 on page 125 illustrates watchdog communication between MP581s in a hub-based system.

BAS-APG001-EN

123

Page 135
Image 135
Trane Engineered Smoke Control System for Tracer Summit Custom bindings, Uukl binding list watchdog communication, 123

BAS-APG001-EN, Engineered Smoke Control System for Tracer Summit specifications

The Trane Engineered Smoke Control System is an advanced solution designed to enhance safety and efficiency in buildings by effectively managing smoke during emergency situations. Specifically tailored for integration with the Tracer Summit Building Automation System, the Trane Engineered Smoke Control System (BAS-APG001-EN) combines cutting-edge technologies with user-friendly features, empowering facility managers to maintain optimal air quality and ensure occupant safety.

One of the standout features of the system is its programmable logic capabilities, which allow for customized smoke management strategies based on building layout and operations. This flexibility ensures that smoke is effectively controlled, providing clear egress paths for occupants while maintaining a safe environment for emergency responders. The system is engineered to operate seamlessly with other building systems, including HVAC and fire alarm systems, enabling a cohesive response during smoke events.

The Trane Engineered Smoke Control System employs sophisticated detection technologies that monitor air quality and detect smoke in real-time. This proactive approach facilitates early intervention, allowing for rapid activation of smoke control measures. Additionally, the integration of variable speed fans ensures that smoke is moved efficiently out of critical areas, reducing the risk of smoke inhalation for building occupants.

One of the key characteristics of this system is its ability to provide reliable, redundant operation. With engineered backup systems in place, the reliability of smoke control measures is significantly enhanced, ensuring that they will function correctly even in the event of a power failure. This is especially critical in high-rise buildings or complex structures, where smoke control is vital to occupant safety.

User interface features included in the Tracer Summit system offer intuitive controls and monitoring capabilities, simplifying the management of smoke control operations. Facility managers can easily view system status, receive alerts, and make necessary adjustments through the user-friendly dashboard, enhancing operational efficiency.

The Trane Engineered Smoke Control System stands out as a premier solution for smoke management in contemporary building designs. By integrating sophisticated detection technologies, programmable logic, and reliable operation, it provides an essential layer of safety in creating environments that prioritize occupant protection. As buildings continue to evolve, Trane’s commitment to innovation ensures that its Engineered Smoke Control System remains a key component in modern fire safety infrastructure.