System testing

System testing

System testing is a pre-installation consideration. To verify proper operation, the smoke control system must include provisions for: automatic weekly self-testing and manual periodic testing.

Automatic weekly self-testing

As UL requires, the smoke control system provides automated weekly self-tests for dedicated smoke control system components. The self-tests activate components and monitor operation. They provide verification of operation status indications to the FSCS that show if the component passed or failed the test. Automatic weekly self-tests do not function if a smoke or fire alarm is present.

Manual periodic testing

As NFPA 92A (NFPA 2000, Recommended Practice for Smoke Control Systems), chapter 5.4 requires, the smoke control system provides a manual testing capability. It provides annual tests for nondedicated system components and semi-annual tests for dedicated system components. The semi-annual tests are required in addition to the automated weekly self-tests for dedicated smoke control system components. Building maintenance personnel schedule and conduct the tests.

The manual periodic tests verify smoke control system responses to alarm zone inputs. Some of the manual testing must be performed with the system operating on emergency power, if applicable. An alarm must be generated in each zone. The system and equipment responses must be verified and recorded. Manual periodic testing should occur when the building is not occupied.

Alarm response

Alarm response is a pre-installation consideration. NFPA 92A (NFPA 1996, Recommended Practice for Smoke Control Systems), section 3.4.5.5 requires the automatic response to an alarm to be based on the location of the first alarm. Subsequent alarms from other zones must be ignored for the purposes of automatic response.

Automatic smoke control matrix

An automatic smoke control matrix (Table 5 on page 28, dedicated; Table 6 on page 28, nondedicated) shows each piece of mechanical equipment and each building zone. The matrix shows the automatic response of each piece of equipment to an initial alarm for each smoke zone. It also shows the mode of each zone based on an alarm in another zone. Commands from the FSCS may override the automatic responses. The matrix must be engineered for a specific project.

BAS-APG001-EN

27

Page 39
Image 39
Trane Engineered Smoke Control System for Tracer Summit System testing, Alarm response, Automatic smoke control matrix

BAS-APG001-EN, Engineered Smoke Control System for Tracer Summit specifications

The Trane Engineered Smoke Control System is an advanced solution designed to enhance safety and efficiency in buildings by effectively managing smoke during emergency situations. Specifically tailored for integration with the Tracer Summit Building Automation System, the Trane Engineered Smoke Control System (BAS-APG001-EN) combines cutting-edge technologies with user-friendly features, empowering facility managers to maintain optimal air quality and ensure occupant safety.

One of the standout features of the system is its programmable logic capabilities, which allow for customized smoke management strategies based on building layout and operations. This flexibility ensures that smoke is effectively controlled, providing clear egress paths for occupants while maintaining a safe environment for emergency responders. The system is engineered to operate seamlessly with other building systems, including HVAC and fire alarm systems, enabling a cohesive response during smoke events.

The Trane Engineered Smoke Control System employs sophisticated detection technologies that monitor air quality and detect smoke in real-time. This proactive approach facilitates early intervention, allowing for rapid activation of smoke control measures. Additionally, the integration of variable speed fans ensures that smoke is moved efficiently out of critical areas, reducing the risk of smoke inhalation for building occupants.

One of the key characteristics of this system is its ability to provide reliable, redundant operation. With engineered backup systems in place, the reliability of smoke control measures is significantly enhanced, ensuring that they will function correctly even in the event of a power failure. This is especially critical in high-rise buildings or complex structures, where smoke control is vital to occupant safety.

User interface features included in the Tracer Summit system offer intuitive controls and monitoring capabilities, simplifying the management of smoke control operations. Facility managers can easily view system status, receive alerts, and make necessary adjustments through the user-friendly dashboard, enhancing operational efficiency.

The Trane Engineered Smoke Control System stands out as a premier solution for smoke management in contemporary building designs. By integrating sophisticated detection technologies, programmable logic, and reliable operation, it provides an essential layer of safety in creating environments that prioritize occupant protection. As buildings continue to evolve, Trane’s commitment to innovation ensures that its Engineered Smoke Control System remains a key component in modern fire safety infrastructure.