Chapter 1 Smoke control overview

Methods of smoke control

Smoke control system designers use five methods to manage smoke. They use the methods individually or in combination. The specific methods used determine the standards of design analysis, performance criteria, acceptance tests, and routine tests. The methods of smoke control consist of: compartmentation, dilution, pressurization, air flow, and buoyancy.

Compartmentation method

The compartmentation method provides passive smoke protection to spaces remote from a fire. The method employs walls, partitions, floors, doors, smoke barriers, smoke dampers, and other fixed and mechanical barriers. Smoke control system designers often use the compartmentation method in combination with the pressurization method.

Dilution method

The dilution method clears smoke from spaces remote from a fire. The method supplies outside air through the HVAC system to dilute smoke. Using this method helps to maintain acceptable gas and particulate concentrations in compartments subject to smoke infiltration from adjacent compartments. In addition, the fire service can employ the dilution method to remove smoke after extinguishing a fire. Smoke dilution is also called smoke purging, smoke removal, or smoke extraction.

Within a fire compartment, however, dilution may not result in any significant improvement in air quality. HVAC systems promote a considerable degree of air mixing within the spaces they serve and building fires can produce very large quantities of smoke. Also, dilution within a fire compartment supplies increased oxygen to a fire.

Pressurization method

The pressurization method protects refuge spaces and exit routes. The method employs a pressure difference across a barrier to control smoke movement (Figure 1 on page 3). The high-pressure side of the barrier is either the refuge area or an exit route. The low-pressure side is exposed to smoke. Airflow from the high-pressure side to the low-pressure side (through construction cracks and gaps around doors) prevents smoke infiltration. A path that channels smoke from the low-pressure side to the outside ensures that gas expansion pressures do not become a problem. A top-vented elevator shaft or a fan-powered exhaust can provide the path.

2

BAS-APG001-EN

Page 14
Image 14
Trane BAS-APG001-EN manual Methods of smoke control, Compartmentation method, Dilution method, Pressurization method

BAS-APG001-EN, Engineered Smoke Control System for Tracer Summit specifications

The Trane Engineered Smoke Control System is an advanced solution designed to enhance safety and efficiency in buildings by effectively managing smoke during emergency situations. Specifically tailored for integration with the Tracer Summit Building Automation System, the Trane Engineered Smoke Control System (BAS-APG001-EN) combines cutting-edge technologies with user-friendly features, empowering facility managers to maintain optimal air quality and ensure occupant safety.

One of the standout features of the system is its programmable logic capabilities, which allow for customized smoke management strategies based on building layout and operations. This flexibility ensures that smoke is effectively controlled, providing clear egress paths for occupants while maintaining a safe environment for emergency responders. The system is engineered to operate seamlessly with other building systems, including HVAC and fire alarm systems, enabling a cohesive response during smoke events.

The Trane Engineered Smoke Control System employs sophisticated detection technologies that monitor air quality and detect smoke in real-time. This proactive approach facilitates early intervention, allowing for rapid activation of smoke control measures. Additionally, the integration of variable speed fans ensures that smoke is moved efficiently out of critical areas, reducing the risk of smoke inhalation for building occupants.

One of the key characteristics of this system is its ability to provide reliable, redundant operation. With engineered backup systems in place, the reliability of smoke control measures is significantly enhanced, ensuring that they will function correctly even in the event of a power failure. This is especially critical in high-rise buildings or complex structures, where smoke control is vital to occupant safety.

User interface features included in the Tracer Summit system offer intuitive controls and monitoring capabilities, simplifying the management of smoke control operations. Facility managers can easily view system status, receive alerts, and make necessary adjustments through the user-friendly dashboard, enhancing operational efficiency.

The Trane Engineered Smoke Control System stands out as a premier solution for smoke management in contemporary building designs. By integrating sophisticated detection technologies, programmable logic, and reliable operation, it provides an essential layer of safety in creating environments that prioritize occupant protection. As buildings continue to evolve, Trane’s commitment to innovation ensures that its Engineered Smoke Control System remains a key component in modern fire safety infrastructure.