Applications of smoke control methods

Natural smoke venting technique

The natural smoke venting technique employs vents in the atrium ceiling or high on the atrium walls to let smoke flow out without the aid of fans (Figure 8). The applicability of natural venting depends primarily on the size of the atrium, the outside temperature, and the wind conditions.

When smoke is detected, all vents open simultaneously. The flow rate through a natural vent depends on the size of the vent, the depth of the smoke layer, and the temperature of the smoke.

Note:

Thermally activated vents are not appropriate for natural venting because of the time delay for opening.

Figure 8: Sample natural smoke venting technique

Smoke filling technique

The smoke filling technique allows smoke to collect at the ceiling. Without fans to exhaust the smoke, the smoke layer grows thicker and descends. Atrium smoke filling is viable when an atrium is of such size that the time needed for the descending smoke to reach the occupants is greater than the time needed for evacuation.

People movement calculations determine evacuation time. For information on people-movement calculations, refer to SFPE 1995, Fire Protection Engineering Handbook.

BAS-APG001-EN

11

Page 23
Image 23
Trane Engineered Smoke Control System for Tracer Summit manual Natural smoke venting technique, Smoke filling technique

BAS-APG001-EN, Engineered Smoke Control System for Tracer Summit specifications

The Trane Engineered Smoke Control System is an advanced solution designed to enhance safety and efficiency in buildings by effectively managing smoke during emergency situations. Specifically tailored for integration with the Tracer Summit Building Automation System, the Trane Engineered Smoke Control System (BAS-APG001-EN) combines cutting-edge technologies with user-friendly features, empowering facility managers to maintain optimal air quality and ensure occupant safety.

One of the standout features of the system is its programmable logic capabilities, which allow for customized smoke management strategies based on building layout and operations. This flexibility ensures that smoke is effectively controlled, providing clear egress paths for occupants while maintaining a safe environment for emergency responders. The system is engineered to operate seamlessly with other building systems, including HVAC and fire alarm systems, enabling a cohesive response during smoke events.

The Trane Engineered Smoke Control System employs sophisticated detection technologies that monitor air quality and detect smoke in real-time. This proactive approach facilitates early intervention, allowing for rapid activation of smoke control measures. Additionally, the integration of variable speed fans ensures that smoke is moved efficiently out of critical areas, reducing the risk of smoke inhalation for building occupants.

One of the key characteristics of this system is its ability to provide reliable, redundant operation. With engineered backup systems in place, the reliability of smoke control measures is significantly enhanced, ensuring that they will function correctly even in the event of a power failure. This is especially critical in high-rise buildings or complex structures, where smoke control is vital to occupant safety.

User interface features included in the Tracer Summit system offer intuitive controls and monitoring capabilities, simplifying the management of smoke control operations. Facility managers can easily view system status, receive alerts, and make necessary adjustments through the user-friendly dashboard, enhancing operational efficiency.

The Trane Engineered Smoke Control System stands out as a premier solution for smoke management in contemporary building designs. By integrating sophisticated detection technologies, programmable logic, and reliable operation, it provides an essential layer of safety in creating environments that prioritize occupant protection. As buildings continue to evolve, Trane’s commitment to innovation ensures that its Engineered Smoke Control System remains a key component in modern fire safety infrastructure.