Intel IXP45X, IXP46X Timing Relationships, Signal Group Absolute Minimum Absolute Maximum Length

Page 87

DDR-SDRAM—Intel®IXP45X and Intel® IXP46X Product Line of Network Processors

7.1.5Timing Relationships

The routing guidelines presented in the following subsections define the recommended routing topologies, trace width, spacing geometries, and typical routed lengths for each signal group. These parameters are recommended to achieve optimal signal integrity and timing.

All signal groups are length matched to the DDR clocks. The clocks on the processor module are length matched to within ±10 mils of each other. Once this overall clock length for any given DDR differential clock is determined, the command and control signals can be routed to within the timing specified. A simple summary of the timing results for each signal group is provided Table 33 on page 87.

Control/Command Group to Clock Summary:

The maximum allowable difference from any command/control signal to the clock is ±0.6 ns.

Figure 31 on page 81

Table 29 on page 81

Data Group to Strobe Summary:

The more restrictive data group to strobe timing occurs for read operations

Table 30 on page 82

Table 31 on page 83

The maximum allowable difference from any data group signal to the strobe is ±0.25 ns.

Figure 32 on page 82

Table 30 on page 82

Strobe to Clock Summary:

The maximum allowable difference from any data strobe signal to the clock is - 0.475 ns to +0.875 ns

Figure 34 on page 83

Table 32 on page 84

These are absolute maximum ratings for length mismatch based in ideal printed board conditions (exact signal propagation delays, ideal signal integrity with no reflections or settling, zero rise/fall times, etc.) In order to compensate for these non-ideal conditions, more restrictive length matching conditions should be used based on signal integrity analysis and simulation to provide a buffer zone and avoid possible variations in silicon or printed circuit board manufacture.

Table 33.

Timing Relationships

 

 

 

 

 

 

Signal Group

Absolute Minimum

Absolute Maximum

 

Length

Length

 

 

 

 

 

 

 

Control to Clock

Clock – 600 ps

Clock + 600 ps

 

 

 

 

 

Command to Clock

Clock – 600 ps

Clock + 600 ps

 

 

 

 

 

Data to Strobe

Strobe – 250 ps

Strobe + 250 ps

 

 

 

 

 

Strobe to Clock

Clock – 475 ps

Clock + 875 ps

 

 

 

 

 

Intel® IXP45X and Intel® IXP46X Product Line of Network Processors

February 2007

HDD

Document Number: 305261, Revision: 004

87

Image 87
Contents February Hardware Design GuidelinesHDD Contents 12.1 Figures Tables Control Group Topology Transmission Line CharacteristicsDate Revision Description Revision HistoryHDD Chapter Name Description Content OverviewTitle Document # Related DocumentationOverview List of Acronyms and AbbreviationsTerm Explanation Smii Intel IXP465 Component Block Diagram Dslam Typical ApplicationsSystem Memory Map System Architecture DescriptionIntel IXP465 Example System Block Diagram Soft Fusible Features Signal Type DefinitionsSymbol Description DDR Sdram Interface Pin Description Sheet 1 Signal InterfaceSoft Fusible Features DDR-266 Sdram InterfaceDdrircomp DDR Sdram Interface Pin Description Sheet 2Ddriwen DdrircveninnExpansion Bus DDR Sdram Memory InterfaceDDR Sdram Initialization Reset Configuration Straps Expansion Bus Signal RecommendationsInput Pull Name Recommendations Output Down Name Function Description Boot/Reset Strapping Configuration Sheet 1Boot/Reset Strapping Configuration Sheet 2 3 8-Bit Device Interface4 16-Bit Device Interface 5 32-Bit Device Interface Bit Device 16/32-Bit Device Interface Byte Enable Flash Interface Example Flash InterfaceUart Interface Sram InterfaceDesign Notes Name Input Pull Recommendations Output Down Uart Signal RecommendationsUart Interface Example MII/SMII InterfaceSignal Interface MII MII NPE a Signal RecommendationsMII NPE B Signal Recommendations Sheet 1 MII NPE C Signal Recommendations MII NPE B Signal Recommendations Sheet 2MAC Management Signal Recommendations NPE A,B,C Device Connection, MIINPE A,B,C Smii Signal Recommendations NPE A, B, C Signal Interface, SmiiDevice Connection, Smii Gpio InterfaceGpio Signal Recommendations I2C Signal Recommendations I2C InterfaceDevice Connection I2C Eeprom Interface Example USB InterfaceUSB Host/Device Signal Recommendations Host Device USB Device Interface Example Utopia Level 2 InterfaceUtopia Signal Recommendations Utopia Interface Example HSS InterfaceHSSRXDATA0 High-Speed, Serial InterfaceHSSTXDATA0 HSSTXCLK0HSSRXCLK1 HSSTXDATA1HSSTXCLK1 HSSRXDATA1HSS Interface Example SSP InterfaceSynchronous Serial Peripheral Port Interface PCI Interface PCI Controller Sheet 1Input Pull Name Outpu Recommendations Down PCI Controller Sheet 2 PCI Interface Block DiagramPCI Interface Supporting 5 V PCI InterfacePCI Host/Option Interface Pin Description Sheet 1 PCI Option InterfacePCI Host/Option Interface Pin Description Sheet 2 PCI Host/Option Interface Pin Description Sheet 3 Jtag InterfaceClock Oscillator Clock SignalsClock Signals Input System ClockPower Power Interface Sheet 1Name Nominal Description Voltage VCC De-Coupling Power SequenceReset Timing De-Coupling Capacitance RecommendationsHDD HDD Component Selection Component PlacementPCB Overview General RecommendationsStack-Up Selection Component Placement on a PCBControlled-impedance traces Low-impedance power distribution Layer Stackup General Layout Guidelines General Layout and Routing GuideGeneral Component Spacing Signal Changing Reference PlanesGood Design Practice for VIA Hole Placement Pad-to-Pad Clearance of Passive Components to a PGA or BGA Clock Signal ConsiderationsSmii Signal Considerations MII Signal ConsiderationsUSB Considerations EMI-Design Considerations Cross-TalkTrace Impedance Power and Ground PlaneHDD @66 MHz Electrical InterfaceTopology @33 MHzClock Distribution PCI Address/Data Routing GuidelinesParameter Routing Guidelines PCI Clock Routing Guidelines Trace Length LimitsRouting Guidelines Signal LoadingDDRIDQS40 DDR Signal GroupsGroup Signal Name Description No of Single Ended Signals IntroductionDDR Sdram HDD Clock Banks Memory Size Supported Memory ConfigurationsVTT VTT Terminating Circuitry Selecting VTT Power SupplyDDR Command and Control Setup and Hold Values Symbol Parameter Min Max UnitsDdrmclk DDR Data to DQS Read Timing Parameters DDR Data to DQS Write Timing Parameters DDR-Data-to-DQS-Write Timing ParametersPrinted Circuit Board Layer Stackup Printed Circuit Board Layer Stackup Printed Circuit Board Controlled ImpedancePrinted Circuit Board Controlled Impedance Signal Group Absolute Minimum Absolute Maximum Length Timing RelationshipsTiming Relationships Clock Group Resistive Compensation Register RcompDDRIBA10, DDRIRASN, DDRICASN, Ddriwen Clock Signal Group Routing GuidelinesData, Command, and Control Group Routing Guidelines Parameter DefinitionTransmission Line Length Clock Group Topology Transmission Line CharacteristicsSimulation Results Clock GroupDDR Clock Topology Two-Bank x16 Devices DDR Clock Simulation Results Two-Bank x16 Devices Data GroupData Group Topology Transmission Line Characteristics DDR Data Topology Two-Bank x16 Devices DDR Data Write Simulation Results Two-Bank x16 Devices HDD HDD Control Group Control Group Topology Transmission Line CharacteristicsDDR RAS Simulation Results Two-Bank x16 Devices Command Group Topology Transmission Line Characteristics Command GroupDDR Command MA3 Topology Two-Bank x16 Devices DDR Address Simulation Results Two-Bank x16 Devices DDR Command RAS Topology Two-Bank x16 Devices 104 DDR RCVENIN/RCVENOUT Topology Rcvenin and RcvenoutDDR RCVENIN/RCVENOUT Simulation Results Rseries = 0 Ω DDR RCVENIN/RCVENOUT Simulation Results Rseries = 60 Ω 108