Texas Instruments TNETX4090 Address-Lookup Statistics, Receiving/transmitting management frames

Page 27

TNETX4090

ThunderSWITCH II9-PORT 100-/1000-MBIT/S ETHERNETSWITCH

SPWS044E ± DECEMBER 1997 ± REVISED AUGUST 1999

DIO interface description (continued)

Table 5. Address-Lookup Statistics

PORT NO.

HEAD

STATISTIC

 

 

 

N/A

0x9200±0x9FFC

Reserved

 

 

 

N/A

0xA000

Unknown unicast destination addresses

 

 

 

N/A

0xA004

Unknown multicast destination addresses

 

 

 

N/A

0xA008

Unknown source addresses

 

 

 

N/A

0xA00C±0xFFFC

Reserved

 

 

 

When accessing the statistics values from the DIO port, it is necessary to perform four 1-byte DIO reads to obtain the full 32-bit counter. Counters always should be read in ascending byte-address order (0, 1, 2, 3). To prevent the counter being updated while reading the four bytes, the entire 32-bit counter value is transferred to a holding register when byte 0 is read.

To provide ease of use with both big- and little-endian CPUs, two alternative byte-ordering schemes are supported. The mode of operations can be selected through the StatControl register.

receiving/transmitting management frames

Frames originating within the host are written to the NM port via the NMRxControl and NMData registers. Once a frame has been fully written, it is then received by the switch and routed to the destination port(s).

Frames that were routed to this port from any of the switch ports are placed in a queue until the host is ready to read them via the NMTxControl and NMData registers. They then are effectively transmitted out of the switch.

SDMA can be used to transmit or receive management frames (the SAD1±SAD0 terminals are ignored when SDMA is asserted) (see Table 6). When SDMA is asserted, the switch uses the value in the DMAAddress register instead of the DIO address registers to access frame data (this also can be used to access the switch statistics). STXRDY and SRXRDY, the interrupts, freebuffs, eof, sof, and iof mechanisms can be used, as desired, to prevent unwanted stalls on the DIO bus during busy periods.

 

 

 

Table 6. DMA Interface Signals

 

 

 

 

 

SIGNAL

DESCRIPTION

 

 

 

 

 

 

Automatically sets up DIO address using the DMAAddress register

 

SDMA

 

 

 

 

 

STXRDY

Indicates that at least one data frame buffer can be read by the management CPU

 

 

 

 

SRXRDY

Indicates that the management CPU can write a frame of any size up to 1535 bytes

 

 

 

 

POST OFFICE BOX 655303 DALLAS, TEXAS 75265

27

Image 27
Contents Description DMA MIIMAC MII MAC Eeprom CPU I/FPCS Duplex LED Rdram Interface Jtag Interface GGP Package Bottom View Signal Ball Name Signal-to-Ball Mapping Signal Names Sorted AlphabeticallyReset Sdma SAD0 Terminal Internal Description Name RESISTOR² Terminal FunctionsJtag interface Control logic interfaceM08TXD7 M08TXD6 M08TXD5 100-/1000-Mbit/s MAC interface Gmii modeTerminal Internal Description Name Resistor Port to not support pause frames Pulldown 10-/100-Mbit/s MAC interface MII mode ports 0±7M00RENEG M01RENEG M04TCLK M05TCLK M06TCLK M07TCLK AD4 ThunderSWITCH II 9-PORT 100-/1000-MBIT/S ETHERNET SwitchMII management interface Rdram interface Eeprom interface DIO interfacePower supply LED interface100-/1000-Mbit/s port PCS LED interface DIO interface description DIO Internal Register Address MapByte DIO Address TNETX4090 ThunderSWITCH II 9-PORT 100-/1000-MBIT/S ETHERNETVLAN1QID VLAN0QID VLAN37QID VLAN36QID TNETX4090 PCS8Status PCS8Control 0x0700 DIO interface description Port Statistics TailPort no Head Statistic Even ODD Ports 0x90Ex Port no Head Statistic TailReceiving/transmitting management frames DMA Interface SignalsSignal Description Address-Lookup StatisticsIeee Std 802.1Q Vlan tags on the NM port State of DIO signal terminals during hardware resetDIO Interface During Hardware Reset DIO Interface State During Hardware ResetCRC Vlan IDFCS Tpid TCITNETX4090 Interrupt processing PHY management interfaceFull-duplex NM port NM bandwidth and priorityMAC interface Receive versus transmit priority Adaptive performance optimization APOInterframe gap enforcement BackoffSpeed, duplex, and flow-control negotiation 10-/100-Mbit/s MII ports 0±7100-Mbit/s Port Negotiation With the TNETE2104 100-/1000-Mbit/s PHY interface port Outcome Port 8 Duplex Negotiation in MII ModePort 8 Pause Negotiation in MII Mode Full-duplex hardware flow controlPretagging and extended port awareness Pretag on transmissionM08GTCLK M08TXEN BIT Name Function Transmit Pretag Bit DefinitionsPretag on reception Learning Format Receive Pretag Bit DefinitionsTNETX4090 RXD Flow COL TXD Directed Format Receive Pretag Bit DefinitionsRing-cascade topology RXD Flow COL TXDSwitch Terminal Ring-Topology ConnectivityM08GTCLK M08TXEN M08RXDV SCL SDA Edio TNETX4090 EclkGND Outcome Stop Load Initd ² Fault LED Eclk Interaction of Eeprom load with the SIO registerSummary of Eeprom load outcomes State Display Compatibility with future device revisionsPort LED States Collision LED StatesMulti-LED display PCS duplex LEDLED Status Bit Definitions and Shift Order Lamp testSout SCHAIN0 Txclk Vref Rxclk VDD BUS Enable GND BUS Ctrl Rdram SINBUS Enable GND Rdram BUS Ctrl SIN TNETX4090 VCC NC Txclk Vref Rxclk VDDJtag Bist Status Jtag Instruction OpcodesHighz instruction Racbist instructionFrame routing Vlan supportIale Spanning-tree support Address maintenanceIeee Std 802.1Q tags ± reception Ieee Std 802.1Q header ± transmissionAging algorithms Frame-Routing Algorithm SPWS044E ± December 1997 ± Revised August Port routing code Removal of source port Port trunking/load sharingExtended port awareness Port trunking exampleTrunk Group 0 Port Membership Trunk0Ports Register Trunk Group 1 Port Membership Trunk1Ports RegisterFlow control System test capabilities Other flow-control mechanismsHardware flow control Multicast limitInternal wrap test Reading RdramPHY TNETX4090 Duplex wrap testMIN NOM MAX Unit Recommended operating conditionsJtag interface Control signals Reset see FigureTiming requirements over recommended operating conditions PMA receive see Figure Physical medium attachment interface port ReceivePMA transmit see Figure TransmitGmii port Gmii receive see FigureGmii transmit see Figure Gmii Clock PMA and Gmii clock see FigureMII receive see Figure MII ports 0±8MII clock see Figure MII transmit see FigureDbusctrl Dbusen Rdram interfaceRdram see Figure Dtxclk DrxclkDIO interface DIO and DMA writes see FigureSCS Srnw SAD1±SAD0 Sdma SDATA7± SDATA0 Srdy Sint SCS Srnw SAD1±SAD0 Sdma SDATA7± SDATA0 Srdy DIO and DMA reads see FigureEeprom interface Eeprom writes see FigureEeprom reads see Figure LED interface LED see FigureLedclk Leddata VOL VOHTTL Output Macro Propagation-Delay-Time Voltage Waveforms VDD VOH 50% LvcmosVOL VDD Mechanical Data TBD TNETX4090GGP Obsolete BGAImportant Notice