Texas Instruments TNETX4090 specifications

Page 30

TNETX4090

ThunderSWITCH II9-PORT 100-/1000-MBIT/S ETHERNETSWITCH

SPWS044E ± DECEMBER 1997 ± REVISED AUGUST 1999

frame format on the NM port (continued)

Any device reading frames out of the NM port must expect frames to be in the format shown in Figure 2.

Frames received into the switch on the NM port also must conform to this format, with the following caveats:

Dcrc = 0 in NMRxControl

When the host is providing a frame containing valid CRC it also must provide in the TPID field valid header parity protection and indicate via the crctype bit which type of CRC the frame contains [i.e., including the header (crctype = 0), or excluding the header (crctype = 1)]. If crctype indicates that the header is included, as for NM port transmissions, this mimics the presence of IEEE Std 802.1Q TPID of 81±00 (ethertype constant) in the TPID field. If a CRC error or parity error is detected, the frame is discarded.

When crctype indicates that the header is included, the NM port regenerates CRC to exclude the header during the reception process (this converts the frame into the required internal frame format).

Dcrc = 1 in NMRxControl

If the switch is being asked to generate a CRC word for the frame, the values in the TPID field are ignored by the NM port. The switch inserts header parity protection. It replaces the final four bytes of the frame with the calculated CRC (the values in the final four bytes provided are don't care).

In either case, the NM port inserts its own port number into the source port field in the least significant bits of the first TPID byte, sets the crctype bit to 0, and also sets the reserved bits to 0.

Frames received from the host via the NM port are required to contain a valid IEEE Std 802.1Q VLAN ID in the third and fourth bytes, following the source address (the NM port does not have a PortxQTag register for inserting a VLAN tag if none is provided and does not have an rxacc bit). Frames that do not contain a VLAN tag are incorrectly routed. They also can be corrupted at the transmission port(s). The header-stripping process does not check that the two bytes after the source address are a valid IEEE Std 802.1Q TPID because there is a valid header under all other circumstances.

When a frame is transmitted on the NM port, no header stripping occurs (again because the NM port does not have a PortxQTag register or txacc bit), so the frame read by the host software contains one header (or possibly more, depending on how the frame was received).

In either case, the NM port inserts its own port number into the source port field in the least significant bits of the first TPID byte and sets the reserved bits to 0. Frames received from the host via the NM port are required to contain a valid IEEE Std 802.1Q VLAN ID (VID) in the third and fourth bytes following the source address. (The NM port does not have a default VLAN ID register for inserting a VLAN tag if none is provided. It cannot also be configured as an access port.) Frames that do not contain a valid tag are incorrectly routed. They also can be corrupted at the transmission port(s) as the tag-stripping process does not check that the four bytes after the source address are a valid tag because they are valid tags under all other circumstances.

When a frame is transmitted on (read from) the NM port, no tag stripping occurs (because the NM port does not have the default VLAN ID register or access configuration control), so the frame read by the host software can contain one or more header tags, depending on how the frame was received.

30

POST OFFICE BOX 655303 DALLAS, TEXAS 75265

Image 30
Contents Description MAC Eeprom CPU I/F MIIMAC MII DMAPCS Duplex LED Rdram Interface Jtag Interface GGP Package Bottom View Signal-to-Ball Mapping Signal Names Sorted Alphabetically Signal Ball NameReset Sdma SAD0 Control logic interface Terminal FunctionsJtag interface Terminal Internal Description Name RESISTOR²100-/1000-Mbit/s MAC interface Gmii mode M08TXD7 M08TXD6 M08TXD5Terminal Internal Description Name Resistor Port to not support pause frames 10-/100-Mbit/s MAC interface MII mode ports 0±7 PulldownM00RENEG M01RENEG ThunderSWITCH II 9-PORT 100-/1000-MBIT/S ETHERNET Switch M04TCLK M05TCLK M06TCLK M07TCLK AD4MII management interface Rdram interface DIO interface Eeprom interfacePower supply LED interface100-/1000-Mbit/s port PCS LED interface DIO interface description DIO Internal Register Address MapByte DIO Address ThunderSWITCH II 9-PORT 100-/1000-MBIT/S ETHERNET TNETX4090VLAN1QID VLAN0QID VLAN37QID VLAN36QID TNETX4090 PCS8Status PCS8Control 0x0700 DIO interface description Port Statistics TailPort no Head Statistic Even ODD Ports Port no Head Statistic Tail 0x90ExAddress-Lookup Statistics DMA Interface SignalsSignal Description Receiving/transmitting management framesDIO Interface State During Hardware Reset State of DIO signal terminals during hardware resetDIO Interface During Hardware Reset Ieee Std 802.1Q Vlan tags on the NM portTpid TCI Vlan IDFCS CRCTNETX4090 NM bandwidth and priority PHY management interfaceFull-duplex NM port Interrupt processingMAC interface Backoff Adaptive performance optimization APOInterframe gap enforcement Receive versus transmit priority10-/100-Mbit/s MII ports 0±7 Speed, duplex, and flow-control negotiation100-Mbit/s Port Negotiation With the TNETE2104 100-/1000-Mbit/s PHY interface port Full-duplex hardware flow control Port 8 Duplex Negotiation in MII ModePort 8 Pause Negotiation in MII Mode OutcomePretagging and extended port awareness Pretag on transmissionM08GTCLK M08TXEN Learning Format Receive Pretag Bit Definitions Transmit Pretag Bit DefinitionsPretag on reception BIT Name FunctionRXD Flow COL TXD Directed Format Receive Pretag Bit DefinitionsRing-cascade topology TNETX4090 RXD Flow COL TXDSwitch Terminal Ring-Topology ConnectivityM08GTCLK M08TXEN M08RXDV SCL SDA Edio TNETX4090 EclkGND Outcome Stop Load Initd ² Fault LED Eclk Interaction of Eeprom load with the SIO registerSummary of Eeprom load outcomes Collision LED States Compatibility with future device revisionsPort LED States State DisplayLamp test PCS duplex LEDLED Status Bit Definitions and Shift Order Multi-LED displayTNETX4090 VCC NC Txclk Vref Rxclk VDD BUS Enable GND BUS Ctrl Rdram SINBUS Enable GND Rdram BUS Ctrl SIN Sout SCHAIN0 Txclk Vref Rxclk VDDRacbist instruction Jtag Instruction OpcodesHighz instruction Jtag Bist StatusFrame routing Vlan supportIale Ieee Std 802.1Q header ± transmission Address maintenanceIeee Std 802.1Q tags ± reception Spanning-tree supportAging algorithms Frame-Routing Algorithm SPWS044E ± December 1997 ± Revised August Port routing code Port trunking/load sharing Removal of source portTrunk Group 1 Port Membership Trunk1Ports Register Port trunking exampleTrunk Group 0 Port Membership Trunk0Ports Register Extended port awarenessFlow control Multicast limit Other flow-control mechanismsHardware flow control System test capabilitiesReading Rdram Internal wrap testDuplex wrap test PHY TNETX4090Recommended operating conditions MIN NOM MAX UnitJtag interface Control signals Reset see FigureTiming requirements over recommended operating conditions Physical medium attachment interface port Receive PMA receive see FigureTransmit PMA transmit see FigureGmii port Gmii receive see FigureGmii transmit see Figure PMA and Gmii clock see Figure Gmii ClockMII ports 0±8 MII receive see FigureMII transmit see Figure MII clock see FigureDtxclk Drxclk Rdram interfaceRdram see Figure Dbusctrl DbusenDIO interface DIO and DMA writes see FigureSCS Srnw SAD1±SAD0 Sdma SDATA7± SDATA0 Srdy Sint DIO and DMA reads see Figure SCS Srnw SAD1±SAD0 Sdma SDATA7± SDATA0 SrdyEeprom interface Eeprom writes see FigureEeprom reads see Figure LED interface LED see FigureLedclk Leddata VOH VOLTTL Output Macro Propagation-Delay-Time Voltage Waveforms VDD VOH 50% LvcmosVOL VDD Mechanical Data TNETX4090GGP Obsolete BGA TBDImportant Notice