Product Preview

DS21Q55

23.4 MCLK Prescaler

A 16.384MHz, 8.192MHz, 4.096MHz, 2.048MHz, or 1.544MHz clock must be applied at MCLK. ITU specification G.703 requires an accuracy of ±50ppm for both T1 and E1. TR62411 and ANSI specs require an accuracy of ±32ppm for T1 interfaces. A prescaler will divide the 16MHz, 8MHz, or 4MHz clock down to 2.048MHz. There is an onboard PLL for the jitter attenuator that will convert the 2.048MHz clock to a 1.544MHz rate for T1 applications. Setting JAMUX (LIC2.3) to a logic 0 bypasses this PLL.

23.5 Jitter Attenuator

The DS21Q55 contains an onboard jitter attenuator that can be set to a depth of either 32 bits or 128 bits via the JABDS bit (LIC1.2). The 128-bit mode is used in applications where large excursions of wander are expected. The 32-bit mode is used in delay-sensitive applications. The characteristics of the attenuation are shown in Figure 14. The jitter attenuator can be placed in either the receive path or the transmit path by appropriately setting or clearing the JAS bit (LIC1.3). Also, the jitter attenuator can be disabled (in effect, removed) by setting the DJA bit (LIC1.1). Onboard circuitry adjusts either the recovered clock from the clock/data recovery block or the clock applied at the TCLK pin to create a smooth jitter free clock which is used to clock data out of the jitter attenuator FIFO. It is acceptable to provide a gapped/bursty clock at the TCLK pin if the jitter attenuator is placed on the transmit side. If the incoming jitter exceeds either 120UIpp (buffer depth is 128 bits) or 28UIpp (buffer depth is 32 bits), then the jitter attenuator will divide the internal nominal 32.768MHz (E1) or 24.704MHz (T1) clock by either 15 or 17 instead of the normal 16 to keep the buffer from overflowing. When the device divides by either 15 or 17, it also sets the Jitter Attenuator Limit Trip (JALT) bit in Status Register 1 (SR1.4).

23.6 CMI (Code Mark Inversion) Option

The DS21Q55 provides a CMI interface for connection to optical transports. This interface is a unipolar 1T2B type of signal. Ones are encoded as either a logical one or zero level for the full duration of the clock period. Zeros are encoded as a zero-to-one transition at the middle of the clock period.

CMI CODING Figure 25-3

CLOCK

DATA

1

1

0

1

0

0

1

CMI

Transmit and receive CMI is enabled via LIC4.7. When this register bit is set, the TTIP pin will output CMI coded data at normal levels. This signal can be used to directly drive an optical interface. When CMI is enable, the user can also use HDB3/B8ZS coding. When this register bit is set, the RTIP pin will become a unipolar CMI input. The CMI signal will be processed to extract and align the clock with data.

153 of 248

012103

Please contact telecom.support@dalsemi.com or search http://www.maxim-ic.com for updated

information.

Page 153
Image 153
Maxim DS21Q55 specifications Mclk Prescaler, CMI Code Mark Inversion Option, CMI Coding Figure