Function Calculations
kHyperbolic Functions (sinh, cosh, tanh) and Inverse Hyperbolic Functions
| Problem | Use this keyboard: |
| Operation | |||
|
|
|
|
| |||
| mth | abc | cat | 2D | |||
|
|
|
| ||||
|
|
|
|
|
|
|
|
sinh3.6 = 18.28545536 | TRIG |
| Func |
| =1 3.6 w | ||
|
|
|
|
|
|
|
|
cosh1.5 – sinh1.5 | TRIG |
| Func |
| =21.5 | ||
= 0.2231301601 |
|
|
|
| w | ||
|
|
|
|
|
|
|
|
MATH | Func | e - 1.5 w | |||||
TRIG |
| Func |
| =@ 20 /15 w or | |||
| 15 |
|
|
|
|
| =@)N 20 c |
= 0.7953654612 |
|
|
|
| 15 w | ||
|
|
|
|
|
|
|
|
Solve for x given | TRIG |
| Func |
| =# 0.88 )/4 w or | ||
tanh(4x) = 0.88. |
|
|
|
| )N9=# | ||
x = |
|
|
|
| 0.88 )c 4 w | ||
4 |
|
|
|
|
| ||
|
|
|
|
|
|
| |
=0.3439419141 |
|
|
|
|
| ||
|
|
|
|
|
|
|
|
*This problem checks whether coshx ± sinhx = e±x. Solving the problem above this one (cosh1.5 – sinh1.5) and comparing it with this problem's solution shows that they are equal.
20050501