Texas Instruments TNETX3270 specifications Interaction of Eeprom load with the SIO register

Page 28

TNETX3270

ThunderSWITCH24/3 ETHERNETSWITCH

WITH 24 10-MBIT/S PORTS AND 3 10-/100-MBIT/S PORTS

SPWS043B ± NOVEMBER 1997 ± REVISED APRIL 1999

EEPROM interface (continued)

Multiple bus masters are not supported on the EEPROM interface because the ECLK pin always is driven by the device with a strong 0/strong 1 (i.e., not a strong 1/resistively pulled-up 1).

An Ethernet CRC check is used to ensure the EEPROM data is valid. The 4-byte CRC should be placed within the EEPROM in four data bytes immediately following the last byte to be loaded (equivalent to locations 0x00FC±0x00FF, just above Syscontrol). As each byte is loaded from the EEPROM, the bits within that byte are entered into the CRC checker bit-wise, most significant bit first.

A valid CRC always must be provided by the EEPROM. The EEPROM data for the most significant bit of Syscontrol is withheld until the CRC computed by the device has been checked against the one read from the EEPROM. If the CRC is invalid:

DThe reset bit is set to 1 in Syscontrol, load and initd are both 0, and the TNETX3270 does not begin operation.

DThe fault LED is illuminated and remains in that state until the TNETX3270 is hardware reset or until load in Syscontrol is set to 1.

interaction of EEPROM load with the SIO register

The EDIO pin is shared with the SIO register edata bit. The edata and etxen bits must not both be set to 1 when the load bit is set or the EDIO pin is held at resistive 1 and the EEPROM load fails.

The value of the eclk bit in SIO is don't care when load is set, but to ensure the EEPROM does not see a glitch on its clock signal, the load bit should not be set until the minimum clock high or low time required by the EEPROM on its clock signal has expired since the eclk bit was last changed.

The SIO register is not loaded during the EEPROM download.

summary of EEPROM load outcomes

Table 7 summarizes the various states of register bits and the fault LED for each possible outcome, following an EEPROM load attempt.

Table 7. Summary of EEPROM Load Outcomes

OUTCOME

STOP

LOAD

INITD²

FAULT LED

ECLK

Successful load

0

0

1

0³

Not locked

No EEPROM present

0

0

0

0³

Locked

CRC error detected

1

0

0

1

Not locked

 

 

 

 

 

 

² Assuming the start bit was set to 1 by the EEPROM load

³ Assuming the fault bit in LEDControl = 0 and no memory system parity error is detected

compatibility with future device revisions

All EEPROM locations that correspond to reserved addresses in the memory map, register bits that are read only, and register bits that are marked as reserved should be set to 0 to ensure compatibility with future versions of the device. Failure to do so may result in the unintentional activation of features in future devices. All such bits are included in the CRC calculation.

28

POST OFFICE BOX 655303 DALLAS, TEXAS 75265

Image 28
Contents TNETX3270 ThunderSWITCH 24/3 ETHERNET Switch With 24 10-MBIT/S Ports and 3 10-/100-MBIT/S PortsWith 24 10-MBIT/S Ports and 3 10-/100-MBIT/S Ports DescriptionThunderSWITCH 24/3 ETHERNET ContentsPGV Package TOP View ThunderSWITCH  24/3Terminal Internal Description Name RESISTOR³ 10-/100-Mbit/s MAC interface ports 24±26³ Terminal Internal Description Name ResistorTerminal Functions 10-/100-Mbit/s MAC interface ports 24±26 ²Sdram interface Dras DcasDclk DrasHost DIO interface Eeprom interface Serial MII management PHY interfaceJtag interface Summary of signal terminals by signal group function Power interfaceMiscellaneous Internal Register and Statistics Memory Map DIO register groupsVlan Byte DIO Address Detailed DIO Register MapSIO VLAN1QID VLAN0QID VLAN3QID VLAN2QIDVLAN5QID VLAN4QID VLAN7QID VLAN6QIDVLAN17QID VLAN16QID VLAN19QID VLAN18QIDVLAN21QID VLAN20QID VLAN23QID VLAN22QIDIntenable TNETX3270 reset reinitializes the TNETX3270 0x40000x5FFFFindnode23±16 Findnode31±24 Findnode39±32 Findnode47±40 Findcontrol Findnode7±0 Findnode15±8Interface description State of DIO signals during hardware resetReceiving/transmitting management frames Network management port Frame format on the NM port Vlan ID FCSTpid TCI CRCMII serial management interface PHY management Mbit/s and 10-/100-Mbit/s MAC interface receive controlGiant long frames Short framesReceive filtering of frames Data transmissionTransmit control Adaptive performance optimization APO transmit pacingReceive versus transmit priority Uplink pretaggingSource-Port Pretag Encoding Source PortTAG Received Pretag Port AssignmentsPort 27 NM Edio TNETX3270 Eclk SCL SDA Eeprom interfaceGND Outcome Stop Load Initd ² Fault LED Eclk Interaction of Eeprom load with the SIO registerSummary of Eeprom load outcomes Summary of Eeprom Load OutcomesJtag interface Jtag Instruction OpcodesHighz instruction LED interfaceHardware configurations LED Status Bit Definitions and Shift OrderLamp test Multi-LED displayMbit/s Interface Connections TNETX3270 TNETE2008 TerminalPort CLK Sync TXD3 M03TXD M04TXDM06TXD M03COLConnecting to TNETE2008 PHY² 10-/100-Mbit/s port configuration Switch TNETE2101 Terminal10-/100-Mbit/s MAC interfaces ports 24±26 100-Mbit/s Interface ConnectionsDuplex Configuration ± MxxFORCEHD Speed Configuration ± MxxFORCE1010-/100-Mbit/s port configuration in a nonmanaged switch 10-/100-Mbit/s port configuration in a managed switch Sdram interface TNETX3270 Terminal Interface to SDRAMs Sdram Terminals Not Driven by the TNETX3270Terminals Sdram Terminal Function TNETX3270 Held Sdram Terminal Terminal FunctionTNETX3270 State Terminal During Reset SDRAM-type and quantity indicationInitialization RefreshVlan support Frame routingIale Ieee Std 802.1Q headers ± reception Address maintenanceIeee Std 802.1Q headers ± transmission Aging algorithms Spanning-tree supportFrame-routing determination Frame-Routing Algorithm SPWS043B ± November 1997 ± Revised April Port mirroring CDEPort trunking/load sharing Flow controlCollision-based flow control Ieee Std 802.3 flow controlPause frame reception Internal wrap test Duplex wrap test PHY TNETX3270Copy to uplink MIN NOM MAX Unit Recommended operating conditionsParameter Test Conditions MIN TYP MAX Unit Test measurement MIN MAX Unit Parameter MIN MAX UnitTiming requirements see Note 7 and Figure 10-/100-Mbit/s MAC interface10-/100-Mbit/sreceive ports 24, 25 Timing requirements see Figure 10-/100-Mbit/stransmit ports 24, 25,Sdram command to command see Figure TdDA Delay time, from Dclk ↑ to DA Invalid Sdram subcycleDclk Dras DcasDIO/DMA write cycle DIO/DMA interfaceSDATA7± Z SDATA0 DIO/DMA read cycle Serial MII Management Read/Write Cycle Eeprom Parameter TNETX3150 TNETX3150A Unit MIN MAXTdLEDDATA Delay time, from LEDCLK↑ to 1st LED invalid ² During hard reset, Ledclk runs continuouslyPower-up Oscin and Reset Timing requirements see Figure TsuRESET Setup time Low before Oscin ↑ThRESET Hold time Low after Oscin ↑ TtOSCIN Transition time, Oscin rise and fallMechanical Data Important Notice