Carrier Understanding Maintenance Procedures for 48TCED Nomenclature Air Conditioners

Page 17

Maintenance

Periodically test the GFCI receptacle by pressing the TEST button on the face of the receptacle. This should cause the internal circuit of the receptacle to trip and open the receptacle. Check for proper grounding wires and power line phasing if the GFCI receptacle does not trip as required. Press the RESET button to clear the tripped condition.

Fuse On Powered Type

The factory fuse is a Bussman “Fusetron” T-15, non-renewable screw-in (Edison base) type plug fuse.

Using Unit-Mounted Convenience Outlets

Units with unit-mounted convenience outlet circuits will often require that two disconnects be opened to de-energize all power to the unit. Treat all units as electrically energized until the convenience outlet power is also checked and de-energization is confirmed. Observe National Electrical Code Article 210, Branch Circuits, for use of convenience outlets.

SMOKE DETECTORS

Smoke detectors are available as factory-installed options on 48TC models. Smoke detectors may be specified for Supply Air only or for Return Air without or with economizer or in combination of Supply Air and Return Air. Return Air smoke detectors are arranged for vertical return configurations only. All components necessary for operation are factory-provided and mounted. The unit is factory-configured for immediate smoke detector shutdown operation; additional wiring or modifications to unit terminal board may be necessary to complete the unit and smoke detector configuration to meet project requirements.

System

The smoke detector system consists of a four-wire controller and one or two sensors. Its primary function is to shut down the rooftop unit in order to prevent smoke from circulating throughout the building. It is not to be used as a life saving device.

Controller

The controller (see Fig. 18) includes a controller housing, a printed circuit board, and a clear plastic cover. The controller can be connected to one or two compatible duct smoke sensors. The clear plastic cover is secured to the housing with a single captive screw for easy access to the wiring terminals. The controller has three LEDs (for Power, Trouble and Alarm) and a manual test/reset button (on the cover face).

Duct smoke sensor

 

controller

 

Conduit nuts

 

(supplied by installer)

 

Conduit support plate

 

Terminal block cover

Controller housing

Cover gasket

and electronics

(ordering option)

Conduit couplings

Controller cover

 

(supplied by installer)

 

 

Fastener

 

(2X)

 

Trouble

Alarm

Power

 

Test/reset

 

switch

C08208

Fig. 18 - Controller Assembly

Sensor

The sensor (see Fig. 19) includes a plastic housing, a printed circuit board, a clear plastic cover, a sampling tube inlet and an exhaust tube. The sampling tube (when used) and exhaust tube are attached during installation. The sampling tube varies in length depending on the size of the rooftop unit. The clear plastic cover permits visual inspections without having to disassemble the sensor. The cover attaches to the sensor housing using four captive screws and forms an airtight chamber around the sensing electronics. Each sensor includes a harness with an RJ45 terminal for connecting to the controller. Each sensor has four LEDs (for Power, Trouble, Alarm and Dirty) and a manual test/reset button (on the left-side of the housing).

Air is introduced to the duct smoke detector sensor’s sensing chamber through a sampling tube that extends into the HVAC duct and is directed back into the ventilation system through a (shorter) exhaust tube. The difference in air pressure between the two tubes pulls the sampled air through the sensing chamber. When a sufficient amount of smoke is detected in the sensing chamber, the sensor signals an alarm state and the controller automatically takes the appropriate action to shut down fans and blowers, change over air handling systems, notify the fire alarm control panel, etc.

48TC

17

Image 17
Contents Safety Considerations Table of ContentsWhat to do if you smell gas Unit Arrangement and AccessGeneral Seasonal Maintenance Routine MaintenanceManual Outside Air Hood Screen Supply FAN Blower SectionSupply Fan Belt-Drive Supply-Fan Pulley Adjustment Bearings Adjustable-Pitch Pulley on MotorPeriodic Clean Water Rinse Coil Maintenance and Cleaning RecommendationCooling Condenser CoilRoutine Cleaning of Evaporator Coil Sufaces Routine Cleaning of Novation Condenser Coil SurfacesRefrigerant Charge Refrigerant System Pressure Access PortsPuronr R-410A Refrigerant Seatcore Cooling Charging Charts D08 Cooling Charging ChartsCooling Charging Charts D12 Cooling Charging Charts D14 Circuit a Cooling Charging Charts D14 Circuit B Problem Cause Remedy Cooling Service AnalysisCondenser-Fan Adjustment D14 size Condenser-Fan Adjustment D08-D12 sizeTroubleshooting Cooling System CompressorsUnit-Powered Type Non-Powered TypeConvenience Outlets Duty CycleSmoke Detectors Typical Supply Air Smoke Detector Sensor Location Smoke Detector LocationsFiop Smoke Detector Wiring and Response Completing Installation of Return Air Smoke SensorSensor Alarm Test Procedure Sensor Alarm TestController Alarm Test Sensor and Controller TestsDirty Controller Test Procedure Controller Alarm Test ProcedureDirty Sensor Test Procedure To Configure the Dirty Sensor Test OperationSD-TRK4 Remote Alarm Test Procedure Detector CleaningRemote Test/Reset Station Dirty Sensor Test Dirty Sensor Test Using an SD-TRK4Troubleshooting Compressor Protection Protective DevicesFuel Types and Pressures GAS Heating SystemControl Circuit Combustion-Air Blower Flue Gas PassagewaysMain Burners Burners and IgnitersLimit Switch Cleaning and AdjustmentCheck Unit Operation and Make Necessary Adjustments Burner Ignition LED Error Code DescriptionLED Indication Error Code Description Gas Valve Orifice ReplacementOutputs Integrated Gas Control IGC Board IGC ConnectionsAltitude Compensation Orifice SizesOrifice Carrier Drill Drill Size Part Number ElevationMinimum Heating Entering Air Temperature Troubleshooting Heating SystemHeating Service Analysis Problem Cause RemedyIGC IGC Board LED Alarm CodesReplacing Novation Condenser Coil Condenser Coil ServiceRepairing Novation Condenser Tube Leaks PREMIERLINKt Control Typical PremierLinkt System Control Wiring Diagram Temp Resistance 55 Space Temperature Sensor WiringPremierLink Sensor Usage Space Sensor ModeTB1 Terminal Field Connection Input Signal 56 Internal Connections Thermostat ModeLctb Indoor CO2 Sensor 33ZCSENCO2 Connections PremierLink Filter Switch Connection RTU-MP Control System Signal Type CCN BUS Wire CCN Plug PIN Color NumberRecommended Cables Color Code RecommendationsRTU-MP Multi-Protocol Control Board Typical RTU-MP System Control Wiring Diagram RTU-MP Controller Inputs and Outputs Configurable InputsPoint Name Type of I/O Connection PIN Name Numbers InputsRTU-MP T-55 Sensor Connections Space Temperature SPT SensorsRTU-MP / Indoor CO2 Sensor 33ZCSENCO2 Connections Communication Wiring Protocols Connecting Discrete InputsPower Exhaust output RTU-MP Troubleshooting LEDs BACview6 Handheld ConnectionsTroubleshooting Alarms BACnet MS/TP AlarmsModule Status Report Modstat Example Modbus Basic Protocol TroubleshootingManufacture Date Code Name MeaningEconoMi$er IV Component Locations ECONOMI$ER SystemsEconoMi$er IV Wiring Inputs Outputs EconoMi$erEconoMi$er IV Input/Output Logic Outdoor Air Lockout Sensor Supply Air Temperature SAT SensorEconoMi$er IV Control Modes Outdoor Dry Bulb ChangeoverOutdoor Enthalpy Changeover Differential Dry Bulb ControlMinimum Position Control Exhaust Setpoint AdjustmentIndoor Air Quality IAQ Sensor Input Demand Control Ventilation DCV Damper MovementThermostats Analog CO2 CO2 Sensor ConfigurationCO2 Sensor Standard Settings EconoMi$er IV Sensor Usage DCV Demand Controlled Ventilation and Power ExhaustEconoMi$er IV Preparation Differential EnthalpyEconoMi$er IV Troubleshooting Completion Wiring DiagramsDCV Minimum and Maximum Position Supply-Air Sensor Input48TC Typical Unit Wiring Diagram Power D08, 208/230-3-60 48TC Typical Unit Wiring Diagram Control D08, 208/230-3-60 START-UP, General PRE-START-UPUnit Preparation Gas PipingRefrigerant Service Ports Internal WiringReturn-Air Filters Outdoor-Air Inlet ScreensSTART-UP, RTU-MP Control Field Service TestVentilation Continuous Fan Perform System Check-OutConfiguration Cooling Lockout Temp Cooling/Econ SAT Low SetptHeating Heating SAT High Setpt Heating Lockout TempT55/56 Override Duration Power Exhaust SetptIAQ Low Reference @ 4mA IAQ High Reference @ 20mAOperating Sequences PremierLinkt Control Supplemental Controls48TC 48TC Number Stages Economizer Available Cooling Stages48TC 48TC Linkage Modes Rooftop Mode Value Linkage ModeAlways Occupied Default Occupancy Loadshed Command Gas and Electric Heat UnitsRTU-MP Sequence of Operation SchedulingBAS On/Off BACnet ScheduleDI On/Off Indoor FanFastener Torque Values Power ExhaustEconomizer Indoor Air QualityTorque Values Model Number Nomenclature Appendix I. Model Number SignificanceSerial Number Format Position Number Typical Designates12.5TONS Appendix II. Physical DataPhysical Data Physical Data Heating 12.5TONS Heat Anticipator Setting Amps48TC**08 48TC**12 48TC**14 Gas Connection Natural Gas Heat, Liquid Propane HeatCFM RPM BHP Appendix III. FAN Performance579 FAN PerformanceRPM BHP 48TC**14Unit MOTOR/DRIVE Motor Pulley Turns Open Combo Pulley AdjustmentElectrical Information MCA/MOCP Determination no C.O. or Unpwrd C.O Unit Combustion PowerNOM IFM FAN Motor Exhaust No P.E Type DISC. SizeSize Voltage Control Power Appendix IV. Wiring Diagram ListWiring Diagrams Catalog No 48TC-3SM Appendix V. Motormaster Sensor LocationsPreliminary Information Unit START-UP Checklist