Carrier 48TC*D08 appendix Fastener Torque Values, Economizer, Power Exhaust, Indoor Air Quality

Page 85

Economizer

The Economizer dampers are used to provide free cooling and Indoor Air Quality, if optional CO2 sensor is installed, when the outside conditions are suitable.

The following conditions must be true for economizer operation:

S Indoor Fan has been on for at least 30 seconds. S Enthalpy is Low if the Enthalpy input is enabled. S SAT reading is available.

S OAT reading is available. S SPT reading is available.

S OAT <= High OAT economizer lockout configuration (default = 75).

S OAT <= SPT

If any of the mentioned conditions are not true, the economizer will be set to its configured minimum position. The minimum damper position can be overridden by the IAQ routine described later in this section.

If the above conditions are true, the Economizer Control Master Loop will calculate a damper position value based on the following calculation:

Damper Position = minimum position + PID (SPT - econ setpoint). Econ setpoint is half way between the effective cool and heat setpoints. If the SAT drops below the cooling low supply air setpoint (+ 5_F), the economizer will ramp down to minimum position.

Power Exhaust

If RTU-MP is also controlling an exhaust fan, it can be enabled based on damper position or by occupancy. If configured for continuous occupied operation, it will be energized whenever the controller is in the occupied mode and disabled when in the unoccupied mode. If configured for damper position control, it will be energized whenever the economizer exceeds the power exhaust setpoint and disabled when the economizer drops below the setpoint by a fixed hysteresis of 10%.

Heating

The heating outputs are controlled by the Heating Control PID Loop and Heating Stages Capacity algorithm. They will be used to calculate the desired number of stages needed to satisfy the space by comparing the SPT to the Occupied Heat Setpoint plus the T56 slider offset when occupied and the Unoccupied Heat Setpoint plus the T56 slider offset if unoccupied. The following conditions must be true in order for this algorithm to run:

S Indoor Fan has been ON for at least 30 seconds.

S Cool mode is not active and the time guard between modes equals zero.

S If occupied and SPT <(occupied heat setpoint plus T56 slider offset)

S SPT reading is available

S If it is unoccupied and the SPT < (unoccupied heat setpoint plus T56 slider offset). The indoor fan will be turned on by the staging algorithm.

S OAT < High OAT lockout temperature.

If all of the above conditions are met, the heating outputs will be energized as required, otherwise they will be de-energized. If the SAT begins to exceed the high supply air setpoint, a ramping function will cause the Heat Stages Capacity algorithm to decrease the number of stages until the SAT has dropped below the setpoint.

There is a fixed one minute minimum on time and a one minute off time for each heat output. Heat staging has a 3 minute stage up and 30 second stage down delay.

Indoor Air Quality

If the optional indoor air quality sensor is installed, the RTU-MP will maintain indoor air quality within the space at the user configured differential setpoint. The setpoint is the difference between the indoor air quality and an optional outdoor air quality sensor. If the outdoor air quality is not present then a fixed value of 400ppm is used. The following conditions must be true in order for this algorithm to run:

S The mode is occupied.

S Indoor Fan has been ON for at least 30 seconds. S Indoor Air Quality sensor has a valid reading

As air quality within the space changes, the minimum position of the economizer damper will be changed thus allowing more or less outdoor air into the space depending on the relationship of the indoor air quality to the differential setpoint. If all the above conditions are true, the IAQ algorithm will run and calculates an IAQ minimum position value using a PID loop. The IAQ minimum damper position is then compared against the user configured economizer minimum position and the greatest value becomes the final minimum damper position of the economizer output.

If the calculated IAQ minimum position is greater than the IAQ maximum damper position configuration then it will be clamped to the configured value.

Demand Limit

If the RTU-MP receives a level 1 (one degree offset), 2 (two degree offset), or a 3 (4 degree offset) to the BACnet demand limit variable, the controller will expand the heating and cooling setpoints by the configured demand limit setpoint value and remain in effect until the BACnet demand limit variable receives a 0 value.

FASTENER TORQUE VALUES

See Table 33 for torque values.

48TC

85

Image 85
Contents Safety Considerations Table of ContentsGeneral Unit Arrangement and AccessWhat to do if you smell gas Seasonal Maintenance Routine MaintenanceSupply Fan Belt-Drive Supply FAN Blower SectionManual Outside Air Hood Screen Supply-Fan Pulley Adjustment Bearings Adjustable-Pitch Pulley on MotorPeriodic Clean Water Rinse Coil Maintenance and Cleaning RecommendationCooling Condenser CoilRoutine Cleaning of Evaporator Coil Sufaces Routine Cleaning of Novation Condenser Coil SurfacesPuronr R-410A Refrigerant Refrigerant System Pressure Access PortsRefrigerant Charge Seatcore Cooling Charging Charts D08 Cooling Charging ChartsCooling Charging Charts D12 Cooling Charging Charts D14 Circuit a Cooling Charging Charts D14 Circuit B Problem Cause Remedy Cooling Service AnalysisCondenser-Fan Adjustment D14 size Condenser-Fan Adjustment D08-D12 sizeTroubleshooting Cooling System CompressorsUnit-Powered Type Non-Powered TypeConvenience Outlets Duty CycleSmoke Detectors Typical Supply Air Smoke Detector Sensor Location Smoke Detector LocationsFiop Smoke Detector Wiring and Response Completing Installation of Return Air Smoke SensorSensor Alarm Test Procedure Sensor Alarm TestController Alarm Test Sensor and Controller TestsDirty Controller Test Procedure Controller Alarm Test ProcedureDirty Sensor Test Procedure To Configure the Dirty Sensor Test OperationSD-TRK4 Remote Alarm Test Procedure Detector CleaningRemote Test/Reset Station Dirty Sensor Test Dirty Sensor Test Using an SD-TRK4Troubleshooting Compressor Protection Protective DevicesControl Circuit GAS Heating SystemFuel Types and Pressures Combustion-Air Blower Flue Gas PassagewaysMain Burners Burners and IgnitersCheck Unit Operation and Make Necessary Adjustments Cleaning and AdjustmentLimit Switch LED Indication Error Code Description LED Error Code DescriptionBurner Ignition Gas Valve Orifice ReplacementOutputs Integrated Gas Control IGC Board IGC ConnectionsAltitude Compensation Orifice SizesOrifice Carrier Drill Drill Size Part Number ElevationMinimum Heating Entering Air Temperature Troubleshooting Heating SystemHeating Service Analysis Problem Cause RemedyIGC IGC Board LED Alarm CodesRepairing Novation Condenser Tube Leaks Condenser Coil ServiceReplacing Novation Condenser Coil PREMIERLINKt Control Typical PremierLinkt System Control Wiring Diagram Temp Resistance 55 Space Temperature Sensor WiringTB1 Terminal Field Connection Input Signal Space Sensor ModePremierLink Sensor Usage 56 Internal Connections Thermostat ModeLctb Indoor CO2 Sensor 33ZCSENCO2 Connections PremierLink Filter Switch Connection RTU-MP Control System Signal Type CCN BUS Wire CCN Plug PIN Color NumberRecommended Cables Color Code RecommendationsRTU-MP Multi-Protocol Control Board Typical RTU-MP System Control Wiring Diagram RTU-MP Controller Inputs and Outputs Configurable InputsPoint Name Type of I/O Connection PIN Name Numbers InputsRTU-MP T-55 Sensor Connections Space Temperature SPT SensorsRTU-MP / Indoor CO2 Sensor 33ZCSENCO2 Connections Power Exhaust output Connecting Discrete InputsCommunication Wiring Protocols RTU-MP Troubleshooting LEDs BACview6 Handheld ConnectionsTroubleshooting Alarms BACnet MS/TP AlarmsModule Status Report Modstat Example Modbus Basic Protocol TroubleshootingManufacture Date Code Name MeaningEconoMi$er IV Component Locations ECONOMI$ER SystemsEconoMi$er IV Wiring EconoMi$er IV Input/Output Logic EconoMi$erInputs Outputs Outdoor Air Lockout Sensor Supply Air Temperature SAT SensorEconoMi$er IV Control Modes Outdoor Dry Bulb ChangeoverOutdoor Enthalpy Changeover Differential Dry Bulb ControlIndoor Air Quality IAQ Sensor Input Exhaust Setpoint AdjustmentMinimum Position Control Thermostats Damper MovementDemand Control Ventilation DCV CO2 Sensor Standard Settings CO2 Sensor ConfigurationAnalog CO2 EconoMi$er IV Sensor Usage DCV Demand Controlled Ventilation and Power ExhaustEconoMi$er IV Preparation Differential EnthalpyEconoMi$er IV Troubleshooting Completion Wiring DiagramsDCV Minimum and Maximum Position Supply-Air Sensor Input48TC Typical Unit Wiring Diagram Power D08, 208/230-3-60 48TC Typical Unit Wiring Diagram Control D08, 208/230-3-60 START-UP, General PRE-START-UPUnit Preparation Gas PipingRefrigerant Service Ports Internal WiringReturn-Air Filters Outdoor-Air Inlet ScreensSTART-UP, RTU-MP Control Field Service TestVentilation Continuous Fan Perform System Check-OutConfiguration Cooling Lockout Temp Cooling/Econ SAT Low SetptHeating Heating SAT High Setpt Heating Lockout TempT55/56 Override Duration Power Exhaust SetptIAQ Low Reference @ 4mA IAQ High Reference @ 20mAOperating Sequences PremierLinkt Control Supplemental Controls48TC 48TC Number Stages Economizer Available Cooling Stages48TC 48TC Linkage Modes Rooftop Mode Value Linkage ModeAlways Occupied Default Occupancy Loadshed Command Gas and Electric Heat UnitsRTU-MP Sequence of Operation SchedulingBAS On/Off BACnet ScheduleDI On/Off Indoor FanFastener Torque Values Power ExhaustEconomizer Indoor Air QualityTorque Values Model Number Nomenclature Appendix I. Model Number SignificanceSerial Number Format Position Number Typical DesignatesPhysical Data Appendix II. Physical Data12.5TONS Physical Data Heating 12.5TONS Heat Anticipator Setting Amps48TC**08 48TC**12 48TC**14 Gas Connection Natural Gas Heat, Liquid Propane HeatCFM RPM BHP Appendix III. FAN Performance579 FAN PerformanceRPM BHP 48TC**14Unit MOTOR/DRIVE Motor Pulley Turns Open Combo Pulley AdjustmentElectrical Information MCA/MOCP Determination no C.O. or Unpwrd C.O Unit Combustion PowerNOM IFM FAN Motor Exhaust No P.E Type DISC. SizeWiring Diagrams Appendix IV. Wiring Diagram ListSize Voltage Control Power Catalog No 48TC-3SM Appendix V. Motormaster Sensor LocationsPreliminary Information Unit START-UP Checklist