Carrier 48TC*D08 appendix Cooling, Condenser Coil, Coil Maintenance and Cleaning Recommendation

Page 6

48TC

Changing fan wheel speed by changing pulleys: The horsepower rating of the belt is primarily dictated by the pitch diameter of the smaller pulley in the drive system (typically the motor pulley in these units). Do not install a replacement motor pulley with a smaller pitch diameter than provided on the original factory pulley. Change fan wheel speed by changing the fan pulley (larger pitch diameter to reduce wheel speed, smaller pitch diameter to increase wheel speed) or select a new system (both pulleys and matching belt(s)).

Before changing pulleys to increase fan wheel speed, check the fan performance at the target speed and airflow rate to determine new motor loading (bhp). Use the fan performance tables or use the Packaged Rooftop Builder software program. Confirm that the motor in this unit is capable of operating at the new operating condition. Fan shaft loading increases dramatically as wheel speed is increased.

To reduce vibration, replace the motor’s adjustable pitch pulley with a fixed pitch pulley (after the final airflow balance adjustment). This will reduce the amount of vibration generated by the motor/belt-drive system.

COOLING

!WARNING

UNIT OPERATION AND SAFETY HAZARD

Failure to follow this warning could cause personal injury, death and/or equipment damage.

This system uses PuronR refrigerant which has higher pressures than R-22 and other refrigerants. No other refrigerant may be used in this system. Gauge set, hoses, and recovery system must be designed to handle Puron refrigerant. If unsure about equipment, consult the equipment manufacturer.

Condenser Coil

The condenser coil is new NOVATION Heat Exchanger Technology. This is an all-aluminum construction with louvered fins over single-depth crosstubes. The crosstubes have multiple small passages through which the refrigerant passes from header to header on each end. Tubes and fins are both aluminum construction. Connection tube joints are copper. The coil may be one-row or two-row. Two-row coils are spaced apart to assist in cleaning.

TUBES

FINS

MANIFOLD

MICROCHANNELS

C07273

Fig. 8 - Microchannel Coils

Evaporator Coil

The evaporator coil is traditional round-tube, plate-fin technology. Tube and fin construction is of various optional materials and coatings (see Model Number Format). Coils are multiple-row.

Coil Maintenance and Cleaning Recommendation

Routine cleaning of coil surfaces is essential to maintain proper operation of the unit. Elimination of contamination and removal of harmful residues will greatly increase the life of the coil and extend the life of the unit. The following maintenance and cleaning procedures are recommended as part of the routine maintenance activities to extend the life of the coil.

Remove Surface Loaded Fibers

Surface loaded fibers or dirt should be removed with a vacuum cleaner. If a vacuum cleaner is not available, a soft non-metallic bristle brush may be used. In either case, the tool should be applied in the direction of the fins. Coil surfaces can be easily damaged (fin edges can be easily bent over and damage to the coating of a protected coil) if the tool is applied across the fins.

NOTE: Use of a water stream, such as a garden hose, against a surface loaded coil will drive the fibers and dirt into the coil. This will make cleaning efforts more difficult. Surface loaded fibers must be completely removed prior to using low velocity clean water rinse.

Periodic Clean Water Rinse

A periodic clean water rinse is very beneficial for coils that are applied in coastal or industrial environments. However, it is very important that the water rinse is made with very low velocity water stream to avoid damaging the fin edges. Monthly cleaning as described below is recommended.

6

Image 6
Contents Table of Contents Safety ConsiderationsUnit Arrangement and Access GeneralWhat to do if you smell gas Routine Maintenance Seasonal MaintenanceSupply FAN Blower Section Supply Fan Belt-DriveManual Outside Air Hood Screen Adjustable-Pitch Pulley on Motor Supply-Fan Pulley Adjustment BearingsCooling Coil Maintenance and Cleaning RecommendationPeriodic Clean Water Rinse Condenser CoilRoutine Cleaning of Novation Condenser Coil Surfaces Routine Cleaning of Evaporator Coil SufacesRefrigerant System Pressure Access Ports Puronr R-410A RefrigerantRefrigerant Charge Seatcore Cooling Charging Charts Cooling Charging Charts D08Cooling Charging Charts D12 Cooling Charging Charts D14 Circuit a Cooling Charging Charts D14 Circuit B Cooling Service Analysis Problem Cause RemedyTroubleshooting Cooling System Condenser-Fan Adjustment D08-D12 sizeCondenser-Fan Adjustment D14 size CompressorsConvenience Outlets Non-Powered TypeUnit-Powered Type Duty CycleSmoke Detectors Smoke Detector Locations Typical Supply Air Smoke Detector Sensor LocationCompleting Installation of Return Air Smoke Sensor Fiop Smoke Detector Wiring and ResponseController Alarm Test Sensor Alarm TestSensor Alarm Test Procedure Sensor and Controller TestsDirty Sensor Test Procedure Controller Alarm Test ProcedureDirty Controller Test Procedure To Configure the Dirty Sensor Test OperationRemote Test/Reset Station Dirty Sensor Test Detector CleaningSD-TRK4 Remote Alarm Test Procedure Dirty Sensor Test Using an SD-TRK4Troubleshooting Protective Devices Compressor ProtectionGAS Heating System Control CircuitFuel Types and Pressures Flue Gas Passageways Combustion-Air BlowerBurners and Igniters Main BurnersCleaning and Adjustment Check Unit Operation and Make Necessary AdjustmentsLimit Switch LED Error Code Description LED Indication Error Code DescriptionBurner Ignition Orifice Replacement Gas ValveIntegrated Gas Control IGC Board IGC Connections OutputsOrifice Carrier Drill Drill Size Part Number Orifice SizesAltitude Compensation ElevationHeating Service Analysis Troubleshooting Heating SystemMinimum Heating Entering Air Temperature Problem Cause RemedyIGC Board LED Alarm Codes IGCCondenser Coil Service Repairing Novation Condenser Tube LeaksReplacing Novation Condenser Coil PREMIERLINKt Control Typical PremierLinkt System Control Wiring Diagram 55 Space Temperature Sensor Wiring Temp ResistanceSpace Sensor Mode TB1 Terminal Field Connection Input SignalPremierLink Sensor Usage Thermostat Mode 56 Internal ConnectionsLctb Indoor CO2 Sensor 33ZCSENCO2 Connections PremierLink Filter Switch Connection Recommended Cables Signal Type CCN BUS Wire CCN Plug PIN Color NumberRTU-MP Control System Color Code RecommendationsRTU-MP Multi-Protocol Control Board Typical RTU-MP System Control Wiring Diagram Point Name Configurable InputsRTU-MP Controller Inputs and Outputs Type of I/O Connection PIN Name Numbers InputsSpace Temperature SPT Sensors RTU-MP T-55 Sensor ConnectionsRTU-MP / Indoor CO2 Sensor 33ZCSENCO2 Connections Connecting Discrete Inputs Power Exhaust outputCommunication Wiring Protocols RTU-MP Troubleshooting BACview6 Handheld Connections LEDsTroubleshooting Alarms Alarms BACnet MS/TPModule Status Report Modstat Example Manufacture Date Basic Protocol TroubleshootingModbus Code Name MeaningECONOMI$ER Systems EconoMi$er IV Component LocationsEconoMi$er IV Wiring EconoMi$er EconoMi$er IV Input/Output LogicInputs Outputs EconoMi$er IV Control Modes Supply Air Temperature SAT SensorOutdoor Air Lockout Sensor Outdoor Dry Bulb ChangeoverDifferential Dry Bulb Control Outdoor Enthalpy ChangeoverExhaust Setpoint Adjustment Indoor Air Quality IAQ Sensor InputMinimum Position Control Damper Movement ThermostatsDemand Control Ventilation DCV CO2 Sensor Configuration CO2 Sensor Standard SettingsAnalog CO2 EconoMi$er IV Preparation DCV Demand Controlled Ventilation and Power ExhaustEconoMi$er IV Sensor Usage Differential EnthalpyDCV Minimum and Maximum Position Wiring DiagramsEconoMi$er IV Troubleshooting Completion Supply-Air Sensor Input48TC Typical Unit Wiring Diagram Power D08, 208/230-3-60 48TC Typical Unit Wiring Diagram Control D08, 208/230-3-60 Unit Preparation PRE-START-UPSTART-UP, General Gas PipingReturn-Air Filters Internal WiringRefrigerant Service Ports Outdoor-Air Inlet ScreensVentilation Continuous Fan Field Service TestSTART-UP, RTU-MP Control Perform System Check-OutConfiguration Heating Heating SAT High Setpt Cooling/Econ SAT Low SetptCooling Lockout Temp Heating Lockout TempIAQ Low Reference @ 4mA Power Exhaust SetptT55/56 Override Duration IAQ High Reference @ 20mAOperating Sequences Supplemental Controls PremierLinkt Control48TC 48TC Available Cooling Stages Number Stages Economizer48TC 48TC Rooftop Mode Value Linkage Mode Linkage ModesRTU-MP Sequence of Operation Loadshed Command Gas and Electric Heat UnitsAlways Occupied Default Occupancy SchedulingDI On/Off BACnet ScheduleBAS On/Off Indoor FanEconomizer Power ExhaustFastener Torque Values Indoor Air QualityTorque Values Serial Number Format Appendix I. Model Number SignificanceModel Number Nomenclature Position Number Typical DesignatesAppendix II. Physical Data Physical Data12.5TONS 48TC**08 48TC**12 48TC**14 Gas Connection Heat Anticipator Setting AmpsPhysical Data Heating 12.5TONS Natural Gas Heat, Liquid Propane HeatAppendix III. FAN Performance CFM RPM BHPFAN Performance 57948TC**14 RPM BHPPulley Adjustment Unit MOTOR/DRIVE Motor Pulley Turns Open ComboElectrical Information NOM IFM FAN Motor Exhaust No P.E Unit Combustion PowerMCA/MOCP Determination no C.O. or Unpwrd C.O Type DISC. SizeAppendix IV. Wiring Diagram List Wiring DiagramsSize Voltage Control Power Appendix V. Motormaster Sensor Locations Catalog No 48TC-3SMUnit START-UP Checklist Preliminary Information