Carrier 48TC*D08 Connecting Discrete Inputs, Power Exhaust output, Communication Wiring Protocols

Page 50

48TC

To connect the sensor to the control, identify the positive (4 to 20 mA) and ground (SIG COM) terminals on the OAQ sensor. See Fig. 51. Connect the 4 to 20 mA terminal to RTU-MP J4-5. Connect the SIG COM terminal to RTU-MP J4-6. (See Fig. 66.)

OAQ Sensor/RH Sensor

SEN J4-5

COM J4-6

24 VAC

C08463

Fig. 66 - RTU-MP / Outdoor CO2 Sensor

(33ZCSENCO2) Connections

On 48TC units equipped with factory-installed Smoke Detector(s), the smoke detector controller implements the unit shutdown through its NC contact set connected to the unit’s LCTB input. The FSD function is initiated via the smoke detector’s Alarm NO contact set. The RTU-MP controler communicates the smoke detector’s tripped status to the BAS building control. See Fig. 25 for unit smoke detector wiring.

The Fire Shutdown Switch configuration, MENUConfigInputsinput 5, identifies the normally open status of this input when there is no fire alarm.

Alarm state is reset when the smoke detector alarm condition is cleared and reset at the smoke detector in the unit.

Connecting Discrete Inputs

Filter Status

The filter status accessory is a field-installed accessory. This accessory detects plugged filters. When installing this accessory, the unit must be configured for filter status by setting MENUConfigInputsinput 3, 5, 8, or 9 to Filter Status and normally open (N/O) or normally closed (N/C). Input 8 or 9 is recommended for easy of installation. Refer to Fig. 60 and 61 for wire terminations at J5.

Fan Status

The fan status accessory is a field-installed accessory. This accessory detects when the indoor fan is blowing air. When installing this accessory, the unit must be

configured for fan status by setting MENUConfigInputsinput 3, 5, 8, or 9 to Fan Status and normally open (N/O) or normally closed (N/C). Input 8 or 9 is recommended for easy of installation. Refer to Fig. 60 and 61 for wire terminations at J5.

Remote Occupancy

The remote occupancy accessory is a field-installed accessory. This accessory overrides the unoccupied mode and puts the unit in occupied mode. When installing this accessory, the unit must be configured for remote occupancy by setting MENUConfigInputsinput 3, 5, 8, or 9 to Remote Occupancy and normally open (N/O) or normally closed (N/C).

Also set MENUSchedulesoccupancy source to DI on/off. Input 8 or 9 is recommended for easy of installation. Refer to Fig. 60 and Table 21 for wire terminations at J5.

Power Exhaust (output)

Connect the accessory Power Exhaust contactor coil(s) per Fig. 67.

Power Exhaust

PEC

TAN

J11-3

LCTB

THERMOSTAT

GRA C

C08464

Fig. 67 - RTU-MP Power Exhaust Connections

Space Relative Humidity Sensor - The RH sensor is not used with 48TC models at this time.

Communication Wiring - Protocols

General

Protocols are the communication languages spoken by control devices. The main purpose of a protocol is to communicate information in the most efficient method possible. Different protocols exist to provide different kinds of information for different applications. In the BAS application, many different protocols are used, depending on manufacturer. Protocols do not change the function of a controller; just make the front end user different.

The RTU-MP can be set to communicate on four different protocols: BACnet, Modbus, N2, and LonWorks. Switch 3 (SW3) on the board is used to set protocol and baud rate. Switches 1 and 2 (SW1 and SW2) are used to set the board’s network address. See Fig 68 for the switch setting per protocol. The 3rd party connection to the RTU-MP is through plug J19. Refer to the RTU-MP 3rd Party Integration Guide for more detailed information on protocols, 3rd party wiring, and networking.

NOTE: Power must be cycled after changing the SW1-3 switch settings.

50

Image 50
Contents Table of Contents Safety ConsiderationsWhat to do if you smell gas Unit Arrangement and AccessGeneral Routine Maintenance Seasonal MaintenanceManual Outside Air Hood Screen Supply FAN Blower SectionSupply Fan Belt-Drive Adjustable-Pitch Pulley on Motor Supply-Fan Pulley Adjustment BearingsCooling Coil Maintenance and Cleaning RecommendationPeriodic Clean Water Rinse Condenser CoilRoutine Cleaning of Novation Condenser Coil Surfaces Routine Cleaning of Evaporator Coil SufacesRefrigerant Charge Refrigerant System Pressure Access PortsPuronr R-410A Refrigerant Seatcore Cooling Charging Charts Cooling Charging Charts D08Cooling Charging Charts D12 Cooling Charging Charts D14 Circuit a Cooling Charging Charts D14 Circuit B Cooling Service Analysis Problem Cause RemedyTroubleshooting Cooling System Condenser-Fan Adjustment D08-D12 sizeCondenser-Fan Adjustment D14 size CompressorsConvenience Outlets Non-Powered TypeUnit-Powered Type Duty CycleSmoke Detectors Smoke Detector Locations Typical Supply Air Smoke Detector Sensor LocationCompleting Installation of Return Air Smoke Sensor Fiop Smoke Detector Wiring and ResponseController Alarm Test Sensor Alarm TestSensor Alarm Test Procedure Sensor and Controller TestsDirty Sensor Test Procedure Controller Alarm Test ProcedureDirty Controller Test Procedure To Configure the Dirty Sensor Test OperationRemote Test/Reset Station Dirty Sensor Test Detector CleaningSD-TRK4 Remote Alarm Test Procedure Dirty Sensor Test Using an SD-TRK4Troubleshooting Protective Devices Compressor ProtectionFuel Types and Pressures GAS Heating SystemControl Circuit Flue Gas Passageways Combustion-Air BlowerBurners and Igniters Main BurnersLimit Switch Cleaning and AdjustmentCheck Unit Operation and Make Necessary Adjustments Burner Ignition LED Error Code DescriptionLED Indication Error Code Description Orifice Replacement Gas ValveIntegrated Gas Control IGC Board IGC Connections OutputsOrifice Carrier Drill Drill Size Part Number Orifice SizesAltitude Compensation ElevationHeating Service Analysis Troubleshooting Heating SystemMinimum Heating Entering Air Temperature Problem Cause RemedyIGC Board LED Alarm Codes IGCReplacing Novation Condenser Coil Condenser Coil ServiceRepairing Novation Condenser Tube Leaks PREMIERLINKt Control Typical PremierLinkt System Control Wiring Diagram 55 Space Temperature Sensor Wiring Temp ResistancePremierLink Sensor Usage Space Sensor ModeTB1 Terminal Field Connection Input Signal Thermostat Mode 56 Internal ConnectionsLctb Indoor CO2 Sensor 33ZCSENCO2 Connections PremierLink Filter Switch Connection Recommended Cables Signal Type CCN BUS Wire CCN Plug PIN Color NumberRTU-MP Control System Color Code RecommendationsRTU-MP Multi-Protocol Control Board Typical RTU-MP System Control Wiring Diagram Point Name Configurable InputsRTU-MP Controller Inputs and Outputs Type of I/O Connection PIN Name Numbers InputsSpace Temperature SPT Sensors RTU-MP T-55 Sensor ConnectionsRTU-MP / Indoor CO2 Sensor 33ZCSENCO2 Connections Communication Wiring Protocols Connecting Discrete InputsPower Exhaust output RTU-MP Troubleshooting BACview6 Handheld Connections LEDsTroubleshooting Alarms Alarms BACnet MS/TPModule Status Report Modstat Example Manufacture Date Basic Protocol TroubleshootingModbus Code Name MeaningECONOMI$ER Systems EconoMi$er IV Component LocationsEconoMi$er IV Wiring Inputs Outputs EconoMi$erEconoMi$er IV Input/Output Logic EconoMi$er IV Control Modes Supply Air Temperature SAT SensorOutdoor Air Lockout Sensor Outdoor Dry Bulb ChangeoverDifferential Dry Bulb Control Outdoor Enthalpy ChangeoverMinimum Position Control Exhaust Setpoint AdjustmentIndoor Air Quality IAQ Sensor Input Demand Control Ventilation DCV Damper MovementThermostats Analog CO2 CO2 Sensor ConfigurationCO2 Sensor Standard Settings EconoMi$er IV Preparation DCV Demand Controlled Ventilation and Power ExhaustEconoMi$er IV Sensor Usage Differential EnthalpyDCV Minimum and Maximum Position Wiring DiagramsEconoMi$er IV Troubleshooting Completion Supply-Air Sensor Input48TC Typical Unit Wiring Diagram Power D08, 208/230-3-60 48TC Typical Unit Wiring Diagram Control D08, 208/230-3-60 Unit Preparation PRE-START-UPSTART-UP, General Gas PipingReturn-Air Filters Internal WiringRefrigerant Service Ports Outdoor-Air Inlet ScreensVentilation Continuous Fan Field Service TestSTART-UP, RTU-MP Control Perform System Check-OutConfiguration Heating Heating SAT High Setpt Cooling/Econ SAT Low SetptCooling Lockout Temp Heating Lockout TempIAQ Low Reference @ 4mA Power Exhaust SetptT55/56 Override Duration IAQ High Reference @ 20mAOperating Sequences Supplemental Controls PremierLinkt Control48TC 48TC Available Cooling Stages Number Stages Economizer48TC 48TC Rooftop Mode Value Linkage Mode Linkage ModesRTU-MP Sequence of Operation Loadshed Command Gas and Electric Heat UnitsAlways Occupied Default Occupancy SchedulingDI On/Off BACnet ScheduleBAS On/Off Indoor FanEconomizer Power ExhaustFastener Torque Values Indoor Air QualityTorque Values Serial Number Format Appendix I. Model Number SignificanceModel Number Nomenclature Position Number Typical Designates12.5TONS Appendix II. Physical DataPhysical Data 48TC**08 48TC**12 48TC**14 Gas Connection Heat Anticipator Setting AmpsPhysical Data Heating 12.5TONS Natural Gas Heat, Liquid Propane HeatAppendix III. FAN Performance CFM RPM BHPFAN Performance 57948TC**14 RPM BHPPulley Adjustment Unit MOTOR/DRIVE Motor Pulley Turns Open ComboElectrical Information NOM IFM FAN Motor Exhaust No P.E Unit Combustion PowerMCA/MOCP Determination no C.O. or Unpwrd C.O Type DISC. SizeSize Voltage Control Power Appendix IV. Wiring Diagram ListWiring Diagrams Appendix V. Motormaster Sensor Locations Catalog No 48TC-3SMUnit START-UP Checklist Preliminary Information