Measurement Performance

10.3.1Specification uncertainty limit and test results

The result of the meter verification test will be a percent uncertainty of normalized tube stiffness. The default limit for this uncertainty is ±4.0%. This limit is stored in the transmitter, and can be changed with ProLink II when optional test parameters are entered. For most installations, it is advisable to leave the uncertainty limit at the default value.

When the test is completed, the result will be reported as Pass, Fail, or Abort:

Pass – The test result is within the specification uncertainty limit. If transmitter zero and configuration match factory values, the sensor will meet factory specifications for flow and density measurement. It is expected that meters will pass meter verification every time the test is run.

Fail/Caution – The test result is not within the specification uncertainty limit. Micro Motion recommends that you immediately re-run the meter verification test. If the meter passes the second test, the first Fail/Caution result can be ignored. If the meter fails the second test, the flow tubes may be damaged. Use the knowledge of your process to consider the type of damage and determine the appropriate action. These actions might include removing the meter from service and physically inspecting the tubes. At minimum, you should perform a flow validation (see Section 10.4) and a density calibration (see Section 10.5).

Abort – A problem occurred with the meter verification test (e.g., process instability). Check your process and retry the test.

Compensation

Measurement Performance

Troubleshooting

Defaults

Configuration and Use Manual

85

Page 93
Image 93
Emerson Process Management 1500 manual Specification uncertainty limit and test results

1500 specifications

Emerson Process Management 1500 is a cutting-edge distributed control system designed to enhance operational efficiency, safety, and reliability in industrial processes. Renowned for its robust architecture and scalable features, the 1500 system caters to various sectors, including oil and gas, pharmaceuticals, chemicals, and utilities.

One of the standout features of the Emerson 1500 is its modular design, allowing users to customize and scale the system according to their specific needs. This flexibility ensures that operations can grow and adapt without requiring a complete system overhaul. The control system supports a range of I/O modules, enabling integration with various field devices and technologies.

The Emerson 1500 employs advanced control algorithms to optimize process performance. This includes model predictive control (MPC) and multivariable control, which enhance the ability to manage complex processes through predictive analytics. This predictive capability not only improves operational efficiency but also reduces downtime and maintenance costs.

In addition to its advanced control features, the 1500 system is known for its user-friendly interface. Operators can easily navigate the system through intuitive graphics and dashboards, allowing them to monitor processes in real time. This ease of use significantly reduces training time and improves response times during operational changes or emergencies.

Security is a critical concern for modern industrial control systems, and the Emerson 1500 addresses this with a multi-layered security framework. This includes secure communications, robust authentication, and access controls, ensuring that only authorized personnel can interact with the system.

The Emerson Process Management 1500 also emphasizes interoperability, supporting various communication protocols such as Ethernet/IP, Modbus, and HART, facilitating seamless integration with existing infrastructure. This capability is particularly advantageous for organizations looking to modernize their systems without entirely replacing legacy equipment.

Furthermore, the system supports advanced data analytics and cloud connectivity, allowing organizations to leverage big data for predictive maintenance, performance benchmarking, and decision-making processes. By harnessing the power of data, users can achieve greater efficiencies and drive continuous improvement across their operations.

In summary, the Emerson Process Management 1500 is a versatile and advanced distributed control system characterized by modularity, advanced control features, user-friendliness, robust security, interoperability, and data analytics capabilities. Its comprehensive approach ensures that industries can not only meet current operational demands but also prepare for future challenges in an ever-evolving landscape.