
Return to Section TOC Return to Master TOC
Return to Section TOC Return to Master TOC
Return to Section TOC Return to Master TOC
Return to Section TOC Return to Master TOC
|
|
|
|
| OPERATION |
|
|
|
|
|
| |||||||||
MAKING A TIG WELD WITH AN AMPTROL |
| Close the arc start switch. This opens the gas valve | ||||||||||||||||||
|
|
|
|
|
|
|
|
|
| to automatically purge air from the hose and torch, | ||||||||||
1. Install welding equipment per Section |
|
|
|
| then shields the arc strike area. After the 0.5 sec- | |||||||||||||||
|
|
|
| ond preflow time, the high frequency becomes | ||||||||||||||||
2. Setup controls per Section |
|
|
|
| available to strike the arc. When the arc strikes the | |||||||||||||||
|
|
|
| torch coolant (if used) starts to flow. Also, if welding | ||||||||||||||||
3. Turn on the shielding gas supply, and torch coolant |
| DC- TIG, the high frequency shuts off just after the | ||||||||||||||||||
input supply (if used). |
|
|
|
|
|
|
|
|
| arc strikes. |
|
|
|
|
|
|
| |||
Note: The Precision TIG | 6. Hold the arc start switch closed at minimum Amptrol | |||||||||||||||||||
Solenoid connected to the Cooler receptacle) runs with | ||||||||||||||||||||
the |
| Start level (See Section | ||||||||||||||||||
Maintenance Section D), so the cooler fan and water |
| lished, then increase the output to the desired weld- | ||||||||||||||||||
pump will also not run continuously in idle, but will run |
| ing level and push the torch in the direction of trav- | ||||||||||||||||||
while welding. |
|
|
|
|
|
|
|
|
| el. |
|
|
|
|
|
|
|
|
| |
4. With the torch held safely away from everything, | 7. At the end of the weld, decrease the Amptrol output | |||||||||||||||||||
close the Arc Start Switch of the Amptrol and set the |
| to the | ||||||||||||||||||
gas flow meter. Then open the switch. The welder |
| switch to start the Postflow time. Hold the torch gas | ||||||||||||||||||
is now ready for welding. |
|
|
|
|
|
|
| shielding over the solidifying weld crater while post- | ||||||||||||
|
|
|
|
|
|
| flow time expires and the gas valve reopens. The | |||||||||||||
5. Position the tungsten electrode at the start of the |
| torch coolant (if used) continues to flow for up to 8 | ||||||||||||||||||
weld at a 65° to 75° angle with the horizontal, in the |
| minutes after the arc goes out (with the | ||||||||||||||||||
direction of pushing travel, so that the electrode is |
| Needed feature) to assure torch cooling. |
|
| ||||||||||||||||
approximately 1/8" (4 mm) above the work piece. |
| • Repeat steps 5 through 7 to make another weld. | ||||||||||||||||||
RECOMMENDED ELECTRODE AMPERAGE RANGES - PRECISION TIG 275 |
| |||||||||||||||||||
|
|
|
|
|
|
| SMAW Process |
|
|
|
|
|
|
|
|
| ||||
ELECTRODE |
|
|
| POLARITY |
|
| 3/32" |
| 1/8" |
|
|
| 5/32" |
|
|
| ||||
Fleetweld 5P, Fleetweld 5P+ |
| DC+ |
|
|
| 40 - 70 |
| 75 - 130 |
|
| 90 - 175 |
|
|
| ||||||
Fleetweld 180 |
|
|
| DC+ |
|
|
| 40 - 80 |
| 55 - 110 |
|
| 105 - 135 |
|
|
| ||||
Fleetweld 37 |
|
|
| DC+ |
|
|
| 70 - 95 |
| 100 - 135 |
|
| 145 - 180 |
|
|
| ||||
Fleetweld 47 |
|
|
| DC- |
|
|
| 75 - 95 |
| 100 - 145 |
|
| 135 - 200 |
|
|
| ||||
|
|
| DC+ |
|
|
| 85 - 110 |
| 110 - 160 |
|
| 130 - 220 |
|
|
| |||||
Blue Max Stainless |
|
|
| DC+ |
|
|
| 40 - 80 |
| 75 - 110 |
|
| 95 - 110 |
|
|
| ||||
Red Baron Stainless |
|
|
| DC+ |
|
|
| 40 - 70 |
| 60 - 100 |
|
| 90 - 140 |
|
|
| ||||
Mild steel procedures are based on recommended procedures listed in C2.10 8/94 and the maximum rating of the PRECISION TIG 275 |
|
|
| |||||||||||||||||
Excaliber 7018 procedures are based on |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |||||
Blue Max procedures are based on C6.1 6/95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |||||
Red Baron Procedure are based on |
| GTAW Process |
|
|
|
|
|
|
|
|
| |||||||||
Electrode Polarity |
|
|
| DC- |
|
|
|
|
| AC* |
|
|
|
| Approximate Argon |
| ||||
Electrode Tip Preparation |
| Sharpened |
|
|
|
| Balled |
|
|
|
| Gas Flow Rate |
| |||||||
Electrode Type |
|
|
|
|
|
|
|
|
|
|
|
| EWZr |
|
|
| C.F.H. (l/min.) |
| ||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |||||
|
|
|
|
|
|
|
|
|
|
|
|
| ||||||||
|
|
|
|
|
|
|
|
|
|
|
| |||||||||
|
|
|
|
| EWP |
|
|
|
|
| Stainless | |||||||||
Electrode Size (in.) |
|
|
|
|
| Aluminum | ||||||||||||||
|
| EWG |
|
|
|
|
|
|
|
| EWG |
|
| Steel | ||||||
.010 |
|
| Up to 15 A. |
|
| Up to 15 A. |
|
| Up to 15 A. |
|
| |||||||||
.020 |
|
| Up to 15 A. |
|
| 10 to 15 A. |
|
| 5 to 20 A. |
| ||||||||||
.040 |
|
| Up to 80 A. |
|
| 20 to 30 A. |
|
| 20 to 60 A. |
| ||||||||||
1/16 |
| Up to 150 A. |
|
| 30 to 80 A. |
|
| 60 to 120 A. |
| |||||||||||
3/32 |
| Up to MAX. A. |
|
| 60 to 130 A. |
|
| 100 to 180 A. |
| |||||||||||
1/8 |
|
|
| X |
|
| 100 to 180 A. |
| 160 to 250 A. |
| ||||||||||
Tungsten electrodes are classified as follows by the American | Welding Society (AWS): |
|
|
|
|
|
|
|
|
|
|
| ||||||||
Pure .........................................EWP...........green |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |||||
+1% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |||||
+2% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |||||
+2% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |||||
+1.5% |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |||||
+0.15 to 0.40% Zirconia ..........EWZr..........brown |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |||||
Ceriated Tungsten is now widely accepted as a substitute for 2% Thoriated Tungsten in AC and DC applications. |
|
|
|
|
|
|
| |||||||||||||
|
|
|
|
|
| PRECISION TIG 275 |
|
|
|
|
|
|
| |||||||
Balanced Wave, Unbalanced Wave requires derating of the electrode. |
|
|
|
|
|
|
|
|
|
|
|
|