6 - Introduction to Programming

Multiple Commands in a Message

Multiple SCPI commands can be combined and sent as a single message with one message terminator. There are two important considerations when sending several commands within a single message:

Use a semicolon to separate commands within a message.

There is an implied header path that affects how commands are interpreted by the dc source.

The header path can be thought of as a string that gets inserted before each command within a message. For the first command in a message, the header path is a null string. For each subsequent command the header path is defined as the characters that make up the headers of the previous command in the message up to and including the last colon separator. An example of a message with two commands is:

OUTP:STAT ON;PROT:DEL 2

which shows the use of the semicolon separating the two commands, and also illustrates the header path concept. Note that with the second command, the leading header "OUTP" was omitted because after the "OUTP:STAT ON" command, the header path was became defined as "OUTP" and thus the instrument interpreted the second command as:

OUTP:PROT:DEL 2

In fact, it would have been syntactically incorrect to include the "OUTP" explicitly in the second command, since the result after combining it with the header path would be:

OUTP:OUTP:PROT:DEL 2

which is incorrect.

Moving Among Subsystems

In order to combine commands from different subsystems, you need to be able to reset the header path to a null string within a message. You do this by beginning the command with a colon (:), which discards any previous header path. For example, you could clear the output protection and check the status of the Operation Condition register in one message by using a root specifier as follows:

OUTPut:PROTection:CLEAr;:STATus:OPERation:CONDition?

The following message shows how to combine commands from different subsystems as well as within the same subsystem:

VOLTage:LEVel 20;PROTection 28;:CURRent:LEVel 3;PROTection:STATe ON

Note the use of the optional header LEVel to maintain the correct path within the voltage and current subsystems, and the use of the root specifier to move between subsystems.

Including Common Commands

You can combine common commands with system commands in the same message. Treat the common command as a message unit by separating it with a semicolon (the message unit separator). Common commands do not affect the header path; you may insert them anywhere in the message.

VOLTage:TRIGgered 17.5;:INITialize;*TRG

OUTPut OFF;*RCL 2;OUTPut ON

70

Page 70
Image 70
Agilent Technologies 66309B, D, 66311B Multiple Commands in a Message, Moving Among Subsystems, Including Common Commands

66111A, 66309B, 66311B, D specifications

Agilent Technologies D,c,83440b is an advanced electronic measurement solution designed for engineers and scientists who require precise and reliable performance in their testing environments. This modular test system offers a comprehensive suite of features that cater to a wide range of applications, from high-frequency testing to complex signal analysis.

One of the main features of the D,c,83440b is its impressive frequency range, allowing users to conduct tests across a wide spectrum of signals. The system is capable of handling frequencies up to 26.5 GHz, making it ideal for RF and microwave applications. This broad range ensures that users can work with a variety of devices, including communication systems, radar, and satellite technology.

In addition to its frequency capabilities, Agilent Technologies has engineered the D,c,83440b with exceptional dynamic range and low noise figures. This ensures that even the smallest signals can be accurately measured, allowing for greater precision in testing. The full spectrum analysis feature enables users to capture transient events and analyze them in real-time, which is crucial for troubleshooting and performance evaluations.

The D,c,83440b is built on a modular platform, allowing users to customize their systems according to specific testing needs. This modularity not only enhances flexibility but also simplifies maintenance and upgrades. Users can easily swap out different modules without the need for extensive system reconfiguration, which can significantly reduce downtime in testing environments.

Another standout characteristic of the D,c,83440b is its user-friendly interface. With a large, high-resolution display and intuitive controls, engineers can quickly navigate through settings and data, streamlining the testing process. This ease of use is complemented by powerful software solutions that can automate test sequences, aiding in efficiency and accuracy.

The integration of advanced digital signal processing technologies further enhances the capabilities of the D,c,83440b. These technologies enable more sophisticated measurements and improved signal integrity, which is essential for modern communication systems.

In summary, the Agilent Technologies D,c,83440b is a multifaceted electronic measurement solution that boasts a wide frequency range, excellent dynamic range, modular design, and user-friendly interface. This combination of features makes it suitable for various applications, ensuring that engineers and scientists have the tools they need to succeed in their testing and measurement endeavors.