3 - Installation

The sense leads are part of the dc source’s feedback path and must be kept at a low resistance (less than several ohms) to maintain optimal performance. Connect the sense leads carefully so that they do not become open-circuited. If the sense leads are left unconnected or become open during operation, the dc source will not regulate the output voltage. See "Open Sense Lead Protection".

Connect the remote sense leads only to the remote sense connections at the output connector and at the location on the test fixture where you want to sense the output voltage. There must be not be any continuity from the sense leads to earth ground or from the sense leads to the output leads other than at the test fixture. The open sense detect circuit will check for continuity in the sense leads when the output turned on (from disabled to enabled).

Figure 3-3 shows how to connect remote sense leads and load leads when external disconnect relays are included in the load path.

NOTE: In this arrangement, the output of the unit should be programmed OFF before the relays are switched. This is because if the load leads are opened before the sense leads, the overvoltage protection circuit will trip if it is enabled.

OUTPUT 1/OUTPUT 2

CONNECTOR

-S - + +S

TWIST LEADS

TWIST PAIR

+

LOAD

_

WIRE RESISTANCE

DISCONNECT RELAYS

Figure 3-3. Remote Sense Connections with External Relays

Figure 3-4 shows how to connect remote sense leads when using a removable test fixture. Note that in this configuration, the wires in the part of the test fixture where the phone is located must be less than 20 inches in length. This is for stability as well as for the fact that the remote sense leads cannot compensate for the voltage drop in this part of the test fixture.

The overvoltage protection circuit senses voltage at the output terminals, not at the load. Therefore, due to the load lead voltage drop, the voltage measured by the OVP circuit can be significantly higher than the actual voltage at the load. When using remote sensing, you must program the OVP trip voltage high enough to compensate for the voltage drop between the output terminals and the load. Also, if the sum of the programmed voltage and the load-lead drop exceeds the maximum voltage rating of the dc source, this may also trip the OV protection circuit. Refer to OVP considerations for more information.

34

Page 34
Image 34
Agilent Technologies 66309B, D, 66311B, 66111A manual Remote Sense Connections with External Relays

66111A, 66309B, 66311B, D specifications

Agilent Technologies D,c,83440b is an advanced electronic measurement solution designed for engineers and scientists who require precise and reliable performance in their testing environments. This modular test system offers a comprehensive suite of features that cater to a wide range of applications, from high-frequency testing to complex signal analysis.

One of the main features of the D,c,83440b is its impressive frequency range, allowing users to conduct tests across a wide spectrum of signals. The system is capable of handling frequencies up to 26.5 GHz, making it ideal for RF and microwave applications. This broad range ensures that users can work with a variety of devices, including communication systems, radar, and satellite technology.

In addition to its frequency capabilities, Agilent Technologies has engineered the D,c,83440b with exceptional dynamic range and low noise figures. This ensures that even the smallest signals can be accurately measured, allowing for greater precision in testing. The full spectrum analysis feature enables users to capture transient events and analyze them in real-time, which is crucial for troubleshooting and performance evaluations.

The D,c,83440b is built on a modular platform, allowing users to customize their systems according to specific testing needs. This modularity not only enhances flexibility but also simplifies maintenance and upgrades. Users can easily swap out different modules without the need for extensive system reconfiguration, which can significantly reduce downtime in testing environments.

Another standout characteristic of the D,c,83440b is its user-friendly interface. With a large, high-resolution display and intuitive controls, engineers can quickly navigate through settings and data, streamlining the testing process. This ease of use is complemented by powerful software solutions that can automate test sequences, aiding in efficiency and accuracy.

The integration of advanced digital signal processing technologies further enhances the capabilities of the D,c,83440b. These technologies enable more sophisticated measurements and improved signal integrity, which is essential for modern communication systems.

In summary, the Agilent Technologies D,c,83440b is a multifaceted electronic measurement solution that boasts a wide frequency range, excellent dynamic range, modular design, and user-friendly interface. This combination of features makes it suitable for various applications, ensuring that engineers and scientists have the tools they need to succeed in their testing and measurement endeavors.