7 - Programming the DC Source

Pre-trigger and Post-trigger Data Acquisition

The measurement system lets you capture data before, after, or at the trigger signal. When a measurement is initiated, the dc source continuously samples the instantaneous signal level of the sensing function. As shown in figure 7-7, you can move the block of data being read into the acquisition buffer with reference to the acquisition trigger. This permits pre-trigger or post-trigger data sampling.

OFFSET = -4096

 

4096 DATA POINTS

 

OFFSET = -2048

 

4096 DATA POINTS

 

OFFSET = 0

 

4096 DATA POINTS

 

OFFSET = 0 to 2 9

4096 DATA POINTS

TIME

 

ACQUISITION

 

TRIGGER

 

Figure 7-7. Pre-trigger and Post-trigger Acquisition

To offset the beginning of the acquisition buffer relative to the acquisition trigger, use:

SENS:SWE:OFFS:POIN <offset>

The range for the offset is -4096 to 2,000,000,000 points. As shown in the figure, when the offset is negative, the values at the beginning of the data record represent samples taken prior to the trigger. When the value is 0, all of the values are taken after the trigger. Values greater than zero can be used to program a delay time from the receipt of the trigger until the data points that are entered into the buffer are valid. (Delay time = offset x sample period).

NOTE: If, during a pre-trigger data acquisition, a trigger occurs before the pre-trigger data count is completed, the measurement system ignores this trigger. This will prevent the completion of the measurement if another trigger is not generated.

Programming the Status Registers

Status register programming lets you determine the operating condition of the dc source at any time. For example, you may program the dc source to generate an interrupt (SRQ) when an event such as a current limit occurs. When the interrupt occurs, your program can act on the event in the appropriate fashion.

Figure 7-8 shows the status register structure of the dc source. Table 7-1 defines the status bits. The Standard Event, Status Byte, and Service Request Enable registers and the Output Queue perform standard GPIB functions as defined in the IEEE 488.2 Standard Digital Interface for Programmable Instrumentation. The Operation Status and Questionable Status registers implement functions that are specific to the dc source.

88

Page 88
Image 88
Agilent Technologies 66311B, 66309B Programming the Status Registers, Pre-trigger and Post-trigger Data Acquisition

66111A, 66309B, 66311B, D specifications

Agilent Technologies D,c,83440b is an advanced electronic measurement solution designed for engineers and scientists who require precise and reliable performance in their testing environments. This modular test system offers a comprehensive suite of features that cater to a wide range of applications, from high-frequency testing to complex signal analysis.

One of the main features of the D,c,83440b is its impressive frequency range, allowing users to conduct tests across a wide spectrum of signals. The system is capable of handling frequencies up to 26.5 GHz, making it ideal for RF and microwave applications. This broad range ensures that users can work with a variety of devices, including communication systems, radar, and satellite technology.

In addition to its frequency capabilities, Agilent Technologies has engineered the D,c,83440b with exceptional dynamic range and low noise figures. This ensures that even the smallest signals can be accurately measured, allowing for greater precision in testing. The full spectrum analysis feature enables users to capture transient events and analyze them in real-time, which is crucial for troubleshooting and performance evaluations.

The D,c,83440b is built on a modular platform, allowing users to customize their systems according to specific testing needs. This modularity not only enhances flexibility but also simplifies maintenance and upgrades. Users can easily swap out different modules without the need for extensive system reconfiguration, which can significantly reduce downtime in testing environments.

Another standout characteristic of the D,c,83440b is its user-friendly interface. With a large, high-resolution display and intuitive controls, engineers can quickly navigate through settings and data, streamlining the testing process. This ease of use is complemented by powerful software solutions that can automate test sequences, aiding in efficiency and accuracy.

The integration of advanced digital signal processing technologies further enhances the capabilities of the D,c,83440b. These technologies enable more sophisticated measurements and improved signal integrity, which is essential for modern communication systems.

In summary, the Agilent Technologies D,c,83440b is a multifaceted electronic measurement solution that boasts a wide frequency range, excellent dynamic range, modular design, and user-friendly interface. This combination of features makes it suitable for various applications, ensuring that engineers and scientists have the tools they need to succeed in their testing and measurement endeavors.