Agilent Technologies 66311B, D, 66309B, 66111A manual Assigning the Gpib Address in Programs, 165

Models: 66111A 66309B 66311B D

1 190
Download 190 pages 33.49 Kb
Page 165
Image 165

D

Example Programs

Introduction

The example programs in this section are intended to show how some of the same dc source functions can be programmed to each of the following GPIB interfaces:

1.National Instruments GPIB-PCII Interface/Handler

2.BASIC Language System

Assigning the GPIB Address in Programs

The dc source address cannot be set remotely. It must be set using the front panel Address key. Once the address is set, you can assign it inside programs. The following example is for BASIC and assumes that the GPIB select code is 7, the address is 6, and the dc source is assigned to the variable PS.

1070 ASSIGN @PS TO 706

!Agilent BASIC Interface

For systems using the National Instruments DOS driver, the address is specified in the software configuration program (IBCONFIG.EXE) and assigned a symbolic name. The address then is referenced only by this name within the application program (see the National Instruments GPIB documentation).

National Instruments GPIB Driver

Your program must include the National Instruments header file DECL.BAS. This contains the initialization code for the interface. Prior to running any applications programs, you must set up the interface with the configuration program (IBCONF.EXE).

Your application program will not include the dc source’s symbolic name and GPIB address. These must be specified during configuration (when you run IBCONF.EXE). Note that the primary address range is from 0 to 30. The dc source expects a message termination on EOI or line feed, so set EOI w/last byte of Write. It is also recommended that you set Disable Auto Serial Polling.

All function calls return the status word IBSTA%, which contains a bit (ERR) that is set if the call results in an error. When ERR is set, an appropriate code is placed in variable IBERR%. Be sure to check IBSTA% after every function call. If it is not equal to zero, branch to an error handler that reads IBERR% to extract the specific error.

165

Page 165
Image 165
Agilent Technologies 66311B, 66309B, 66111A Assigning the Gpib Address in Programs, National Instruments Gpib Driver, 165

66111A, 66309B, 66311B, D specifications

Agilent Technologies D,c,83440b is an advanced electronic measurement solution designed for engineers and scientists who require precise and reliable performance in their testing environments. This modular test system offers a comprehensive suite of features that cater to a wide range of applications, from high-frequency testing to complex signal analysis.

One of the main features of the D,c,83440b is its impressive frequency range, allowing users to conduct tests across a wide spectrum of signals. The system is capable of handling frequencies up to 26.5 GHz, making it ideal for RF and microwave applications. This broad range ensures that users can work with a variety of devices, including communication systems, radar, and satellite technology.

In addition to its frequency capabilities, Agilent Technologies has engineered the D,c,83440b with exceptional dynamic range and low noise figures. This ensures that even the smallest signals can be accurately measured, allowing for greater precision in testing. The full spectrum analysis feature enables users to capture transient events and analyze them in real-time, which is crucial for troubleshooting and performance evaluations.

The D,c,83440b is built on a modular platform, allowing users to customize their systems according to specific testing needs. This modularity not only enhances flexibility but also simplifies maintenance and upgrades. Users can easily swap out different modules without the need for extensive system reconfiguration, which can significantly reduce downtime in testing environments.

Another standout characteristic of the D,c,83440b is its user-friendly interface. With a large, high-resolution display and intuitive controls, engineers can quickly navigate through settings and data, streamlining the testing process. This ease of use is complemented by powerful software solutions that can automate test sequences, aiding in efficiency and accuracy.

The integration of advanced digital signal processing technologies further enhances the capabilities of the D,c,83440b. These technologies enable more sophisticated measurements and improved signal integrity, which is essential for modern communication systems.

In summary, the Agilent Technologies D,c,83440b is a multifaceted electronic measurement solution that boasts a wide frequency range, excellent dynamic range, modular design, and user-friendly interface. This combination of features makes it suitable for various applications, ensuring that engineers and scientists have the tools they need to succeed in their testing and measurement endeavors.