Installation - 3

The maximum allowable value of load lead resistance is 4 ohms total (2 ohms per side). This may be further limited to a lower value, based on peak current loading, by the maximum allowable dc voltage drop of 8 volts total (4 volts per side) as specified for remote sense operation. To illustrate, for up to 2 amps peak, the maximum allowable resistance is 4 ohms total, resulting in a maximum voltage drop of up to 8 volts. For 4 amps peak the maximum allowable resistance is 2 ohms total, again resulting in a maximum allowable voltage drop of up to 8 volts.

In addition to keeping dc resistance low, you also need to minimize the total impedance. For higher slew rate currents (0.2 amps/μs) and long wiring lengths (10 to 20 ft.) the inductance can have as much effect as the resistance. To minimize inductance, twist the load leads. The inductance will be on the order of

0.25μH/ft if twisted, and 0.4 μH/ft if untwisted. In addition to lowering the inductance, twisting the leads will reduce noise pick up. If you are using remote sense leads, connect these as a second twisted pair. Do not twist or bundle them with the load leads.

NOTE: The use of relays between the dc source and the phone also increases impedance. Low resistance relays will improve system performance.

Remote Sense Connections

NOTE: You must use remote sensing on both Output 1 and Output 2 for the unit to operate properly and meet its published specifications. If you are not using output 1 and the open sense protection feature is turned ON, you must jumper the + output 1 pin to its + sense pin, and jumper the - output 1 pin to its - sense pin. Otherwise, the unit will go into a protected state and disable the output (unless open sense protection is turned OFF).

Testing has verified stable performance with up to 20 inches of lead length between the sense lead termination and the phone connection (see figure 3-4). However, for optimum performance, connect the sense leads as close as possible to the phone under test. To minimize inductance, connect the sense leads and load leads as separate twisted pairs (see Figure 3-2).

OUTPUT 1/OUTPUT 2

CONNECTOR

-S - + +S

TWIST LEADS

TWIST PAIR

+

LOAD

_

WIRE RESISTANCE

Figure 3-2. Remote Sense Connections

33

Page 33
Image 33
Agilent Technologies 66311B, D, 66309B, 66111A manual Remote Sense Connections

66111A, 66309B, 66311B, D specifications

Agilent Technologies D,c,83440b is an advanced electronic measurement solution designed for engineers and scientists who require precise and reliable performance in their testing environments. This modular test system offers a comprehensive suite of features that cater to a wide range of applications, from high-frequency testing to complex signal analysis.

One of the main features of the D,c,83440b is its impressive frequency range, allowing users to conduct tests across a wide spectrum of signals. The system is capable of handling frequencies up to 26.5 GHz, making it ideal for RF and microwave applications. This broad range ensures that users can work with a variety of devices, including communication systems, radar, and satellite technology.

In addition to its frequency capabilities, Agilent Technologies has engineered the D,c,83440b with exceptional dynamic range and low noise figures. This ensures that even the smallest signals can be accurately measured, allowing for greater precision in testing. The full spectrum analysis feature enables users to capture transient events and analyze them in real-time, which is crucial for troubleshooting and performance evaluations.

The D,c,83440b is built on a modular platform, allowing users to customize their systems according to specific testing needs. This modularity not only enhances flexibility but also simplifies maintenance and upgrades. Users can easily swap out different modules without the need for extensive system reconfiguration, which can significantly reduce downtime in testing environments.

Another standout characteristic of the D,c,83440b is its user-friendly interface. With a large, high-resolution display and intuitive controls, engineers can quickly navigate through settings and data, streamlining the testing process. This ease of use is complemented by powerful software solutions that can automate test sequences, aiding in efficiency and accuracy.

The integration of advanced digital signal processing technologies further enhances the capabilities of the D,c,83440b. These technologies enable more sophisticated measurements and improved signal integrity, which is essential for modern communication systems.

In summary, the Agilent Technologies D,c,83440b is a multifaceted electronic measurement solution that boasts a wide frequency range, excellent dynamic range, modular design, and user-friendly interface. This combination of features makes it suitable for various applications, ensuring that engineers and scientists have the tools they need to succeed in their testing and measurement endeavors.